proton abstraction
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Amy E. Medlock ◽  
Wided Najahi-Missaoui ◽  
Mesafint T. Shiferaw ◽  
Angela N. Albetel ◽  
William N. Lanzilotta ◽  
...  

Ferrochelatase catalyzes the insertion of ferrous iron into a porphyrin macrocycle to produce the essential cofactor, heme. In humans this enzyme not only catalyzes the terminal step, but also serves a regulatory step in the heme synthesis pathway. Over a dozen crystal structures of human ferrochelatase have been solved and many variants have been characterized kinetically. In addition, hydrogen deuterium exchange, resonance Raman, molecular dynamics, and high level quantum mechanic studies have added to our understanding of  the catalytic cycle of the enzyme. However, an understanding of how the metal ion is delivered and the specific role that active site residues play in catalysis remain open questions. Data are consistent with metal binding and insertion occurring from the side opposite from where pyrrole proton abstraction takes place. To better understand iron delivery and binding as well as the role of conserved residues in the active site, we have constructed and characterized a series of enzyme variants. Crystallographic studies as well as rescue and kinetic analysis of variants were performed. Data from these studies are consistent with the M76 residue playing a role in active site metal binding and formation of a weak iron protein ligand being necessary for product release. Additionally, structural data support a role for E343 in proton abstraction and product release in coordination with a peptide loop composed of Q302, S303 and K304 that act a metal sensor.


Author(s):  
Karola Schühle ◽  
Martin Saft ◽  
Bastian Vögeli ◽  
Tobias J. Erb ◽  
Johann Heider

AbstractA novel acyl-CoA dehydrogenase involved in degradation of the auxin indoleacetate by Aromatoleum aromaticum was identified as a decarboxylating benzylmalonyl-CoA dehydrogenase (IaaF). It is encoded within the iaa operon coding for enzymes of indoleacetate catabolism. Using enzymatically produced benzylmalonyl-CoA, the reaction was characterized as simultaneous oxidation and decarboxylation of benzylmalonyl-CoA to cinnamoyl-CoA and CO2. Oxygen served as electron acceptor and was reduced to H2O2, whereas electron transfer flavoprotein or artificial dyes serving as electron acceptors for other acyl-CoA dehydrogenases were not used. The enzyme is homotetrameric, contains an FAD cofactor and is enantiospecific in benzylmalonyl-CoA turnover. It shows high catalytic efficiency and strong substrate inhibition with benzylmalonyl-CoA, but otherwise accepts only a few medium-chain alkylmalonyl-CoA compounds as alternative substrates with low activities. Its reactivity of oxidizing 2-carboxyacyl-CoA with simultaneous decarboxylation is unprecedented and indicates a modified reaction mechanism for acyl-CoA dehydrogenases, where elimination of the 2-carboxy group replaces proton abstraction from C2.


2021 ◽  
Author(s):  
Karola Schühle ◽  
Martin Saft ◽  
Bastian Vögeli ◽  
Tobias J. Erb ◽  
Johann Heider

Abstract A novel acyl-CoA dehydrogenase involved in auxin degradation in Aromatoleum aromaticum was identified as a decarboxylating benzylmalonyl-CoA dehydrogenase (IaaF). It is encoded within the iaa operon coding for enzymes of auxin catabolism. Using enzymatically produced benzylmalonyl-CoA, the reaction was characterized as simultaneous oxidation and decarboxylation of benzylmalonyl-CoA to cinnamoyl-CoA and CO2. Oxygen served as electron acceptor and was reduced to H2O2, whereas electron transfer flavoprotein or artificial dyes serving as electron acceptors for other acyl-CoA dehydrogenases were not accepted. The enzyme is homotetrameric, contains an FAD cofactor and is enantiospecific in benzylmalonyl-CoA turnover. It shows high catalytic efficiency and strong substrate inhibition with benzylmalonyl-CoA, but otherwise accepts only a few medium-chain alkylmalonyl-CoA compounds as alternative substrates with low activities. Its reactivity of oxidizing 2-carboxyacyl-CoA with simultaneous decarboxylation is unprecedented and indicates a modified reaction mechanism for acyl-CoA dehydrogenases, where elimination of the 2-carboxy group replaces proton abstraction from C2.


2020 ◽  
Vol 16 ◽  
pp. 1465-1475
Author(s):  
Liwei Cao ◽  
Mikhail Kabeshov ◽  
Steven V Ley ◽  
Alexei A Lapkin

A computational approach has been developed to automatically generate and analyse the structures of the intermediates of palladium-catalysed carbon–hydrogen (C–H) activation reactions as well as to predict the final products. Implemented as a high-performance computing cluster tool, it has been shown to correctly choose the mechanism and rationalise regioselectivity of chosen examples from open literature reports. The developed methodology is capable of predicting reactivity of various substrates by differentiation between two major mechanisms – proton abstraction and electrophilic aromatic substitution. An attempt has been made to predict new C–H activation reactions. This methodology can also be used for the automated reaction planning, as well as a starting point for microkinetic modelling.


2020 ◽  
Author(s):  
Liwei Cao ◽  
Mikhail Kabeshov ◽  
Steve Ley ◽  
Alexei Lapkin

<p>A computational approach has been developed to automatically generate and analyse the structures of the intermediates of palladium catalysed carbon-hydrogen (C-H) activation reactions as well as to predict the final products. Implemented as a high-performance computing cluster tool, it has been shown to correctly choose the mechanism and rationalise regioselectivity of chosen examples from open literature reports. The developed methodology is capable of predicting reactivity of various substrates by differentiation between two major mechanisms - proton abstraction and the electrophilic aromatic substitution. An attempt has been made to predict new C-H activation reactions. This methodology can also be used for the automated reaction planning, as well as a starting point for microkinetic modelling.</p>


2020 ◽  
Author(s):  
Liwei Cao ◽  
Mikhail Kabeshov ◽  
Steve Ley ◽  
Alexei Lapkin

<p>A computational approach has been developed to automatically generate and analyse the structures of the intermediates of palladium catalysed carbon-hydrogen (C-H) activation reactions as well as to predict the final products. Implemented as a high-performance computing cluster tool, it has been shown to correctly choose the mechanism and rationalise regioselectivity of chosen examples from open literature reports. The developed methodology is capable of predicting reactivity of various substrates by differentiation between two major mechanisms - proton abstraction and the electrophilic aromatic substitution. An attempt has been made to predict new C-H activation reactions. This methodology can also be used for the automated reaction planning, as well as a starting point for microkinetic modelling.</p>


2020 ◽  
Author(s):  
Liwei Cao ◽  
Mikhail Kabeshov ◽  
Steve Ley ◽  
Alexei Lapkin

<p>A computational approach has been developed to automatically generate and analyse the structures of the intermediates of palladium catalysed carbon-hydrogen (C-H) activation reactions as well as to predict the final products. Implemented as a high-performance computing cluster tool, it has been shown to correctly choose the mechanism and rationalise regioselectivity of chosen examples from open literature reports. The developed methodology is capable of predicting reactivity of various substrates by differentiation between two major mechanisms - proton abstraction and the electrophilic aromatic substitution. An attempt has been made to predict new C-H activation reactions. This methodology can also be used for the automated reaction planning, as well as a starting point for microkinetic modelling.</p>


2020 ◽  
Vol 98 (2) ◽  
pp. 98-105
Author(s):  
Bula Singh ◽  
Ranendu Sekhar Das

In higher organisms, metalloenzymes like cytochrome P450, containing a Fe(III) metal center, play an active role in metabolism of paracetamol (APAP). Here, we have chosen a mimicking μ-oxo-diiron complex, [Fe(III)2(μ-O)(phen)4(H2O)2]4+ (1, phen = 1,10-phenanthroline), to study spectrophotometrically the kinetics of the redox interactions with APAP. In acidic buffer media (pH = 3.4–5.1), APAP quantitatively reduces 1 following first-order reaction kinetics. Each molecule of 1 accepts two electrons from APAP and is reduced to ferroin [Fe(phen)3]2+. On oxidation, APAP produces N-acetyl-p-benzoquinone imine (NAPQI), which on hydrolysis results in a mixture of benzoquinone, quinone oxime, acetamide, and acetic acid. In reaction media due to successive deprotonations, 1 exists in equilibrium with the species [Fe(III)2(μ-O)(phen)4(H2O)(OH)]3+ (1a) and [Fe(III)2(μ-O)(phen)4(OH)2]2+ (1b) (pKa = 3.71 and 5.28, respectively). The kinetic analyses suggest for an unusual reactivity order as 1 < 1a ≫ 1b. The mechanistic possibilities suggest that although 1 is reduced by concerted electron transfer (ET) – proton transfer (PT) mechanism, 1a and 1b may be reduced by a concerted PT–ET mechanism where a slow proton-abstraction step is followed by a rapid ET process. It seems that the initial activation of the bridging μ-oxo group by a proton-abstraction results in the higher reactivity of 1a.


2020 ◽  
Vol 22 (35) ◽  
pp. 19613-19622 ◽  
Author(s):  
Jurick Lahiri ◽  
Mehdi Moemeni ◽  
Ilias Magoulas ◽  
Stephen H. Yuwono ◽  
Jessica Kline ◽  
...  

The significance of solvent structural factors in the excited-state proton transfer reactions of the super photobase FR0-SB with alcohols is examined using steady-state and time-resolved spectroscopy and quantum chemistry computations.


2019 ◽  
Vol 123 (40) ◽  
pp. 8448-8456 ◽  
Author(s):  
Jurick Lahiri ◽  
Mehdi Moemeni ◽  
Jessica Kline ◽  
Babak Borhan ◽  
Ilias Magoulas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document