Synthesis and Characterization of Cetuximab–Docetaxel and Panitumumab–Docetaxel Antibody–Drug Conjugates for EGFR-Overexpressing Cancer Therapy

2018 ◽  
Vol 15 (11) ◽  
pp. 5089-5102 ◽  
Author(s):  
Dylan M. Glatt ◽  
Denis R. Beckford Vera ◽  
Shamit S. Prabhu ◽  
Russell J. Mumper ◽  
J. Christopher Luft ◽  
...  
2019 ◽  
Vol 411 (12) ◽  
pp. 2569-2576 ◽  
Author(s):  
Malin Källsten ◽  
Matthijs Pijnappel ◽  
Rafael Hartmann ◽  
Fredrik Lehmann ◽  
Lucia Kovac ◽  
...  

2020 ◽  
Vol 20 ◽  
Author(s):  
Bryan Fonslow ◽  
Gabor Jarvas ◽  
Marton Szigeti ◽  
Andras Guttman

Aims: Demonstrating the capabilities of our new capillary electrophoresis – mass spectrometry method, which facilitates highly accurate relative quantitation of modification site occupancy of antibody-ligand (e.g., antibody-drug) conjugates. Background: Antibody-drug conjugates play important roles in medical discovery for imaging and therapeutic intervention. The localization and stoichiometry of the conjugation can affect the orientation, selectivity, specificity, and strength of molecular interactions, influencing biochemical function. Objective: To demonstrate the option to analyze the localization and stoichiometry of antibody-ligand conjugates by using essentially the same method at all levels including ligand infusion, peptide mapping, as well as reduced and intact protein analysis. Materials and Methods: Capillary electrophoresis coupled to electrospray ionization mass spectrometry was used to analyze the antibodyligand conjugates. Results: We identified three prevalent ligand conjugation sites with estimated stoichiometries of 73, 14, and 6% and an average ligand-antibody ratio of 1.37, illustrating the capabilities of CE-ESI-MS for rapid and efficient characterization of antibody-drug conjugates. Conclusion: The developed multilevel analytical method offers a comprehensive way to determine the localization and stoichiometry of antibody-drug conjugates for molecular medicinal applications. In addition, a significant advantage of the reported approach is that small, hydrophilic, unmodified peptides well separated from the neutrals, which is not common with other liquid phase separation methods such as LC.


2018 ◽  
Vol 11 (2) ◽  
pp. 32 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4764
Author(s):  
Umbreen Hafeez ◽  
Sagun Parakh ◽  
Hui K. Gan ◽  
Andrew M. Scott

Antibody–drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.


Molecules ◽  
2017 ◽  
Vol 22 (8) ◽  
pp. 1281 ◽  
Author(s):  
Hao Chen ◽  
Zongtao Lin ◽  
Kinsie Arnst ◽  
Duane Miller ◽  
Wei Li

Sign in / Sign up

Export Citation Format

Share Document