Enhancing Reactivity and Site-Selectivity in Hydrogen Atom Transfer from Amino Acid C–H Bonds via Deprotonation

2018 ◽  
Vol 20 (3) ◽  
pp. 808-811 ◽  
Author(s):  
Luca Maria Pipitone ◽  
Giulia Carboni ◽  
Daniela Sorrentino ◽  
Marco Galeotti ◽  
Michela Salamone ◽  
...  
2021 ◽  
Author(s):  
Yangyang Shen ◽  
Franziska Schoenebeck ◽  
Ignacio Funes-Ardoiz ◽  
Tomislav Rovis

Trialkylamines are widely found in naturally-occurring alkaloids, synthetic agrochemicals, biological probes, and especially pharmaceuticals agents and pre-clinical candidates. Despite the recent breakthrough of catalytic alkylation of dialkylamines, the selective a-C(sp3 )–H bond functionalization of widely available trialkylamine scaffolds holds promise to streamline complex trialkylamine synthesis, accelerate drug discovery and execute late-stage pharmaceutical modification with complementary reactivity. However, the canonical methods always result in functionalization at the less-crowded site. Herein, we describe a solution to switch the reaction site through fundamentally overcoming the steric control that dominates such processes. By rapidly establishing an equilibrium between a-amino C(sp3 )-H bonds and a highly electrophilic thiol radical via reversible hydrogen atom transfer, we leverage a slower radical-trapping step with electron-deficient olefins to selectively forge a C(sp3 )-C(sp3 ) bond with the more-crowded a-amino radical, with the overall selectivity guided by Curtin-Hammett principle. This subtle reaction profile has unlocked a new strategic concept in direct C-H functionalization arena for forging C– C bonds from a diverse set of trialkylamines with high levels of site-selectivity and preparative utility. Simple correlation of site-selectivity and 13C NMR shift serves as a qualitative predictive guide. The broad consequences of this dynamic system, together with the ability to forge N-substituted quaternary carbon centers and implement late-stage functionalization techniques, holds tremendous potential to streamline complex trialkylamine synthesis and accelerate drug discovery


2021 ◽  
Author(s):  
Akira Matsumoto ◽  
Keiji Maruoka

A novel class of hydrogen-atom transfer (HAT) catalysts based on the readily available and tunable 1,4-diazabicyclo[2.2.2]octane (DABCO) structure was designed, and their photoinduced HAT catalysis ability was demonstrated. The combination of the optimal HAT catalyst with an acridinium-based organophotoredox catalyst enables highly efficient and site-selective C−H alkylation of substrates ranging from unactivated hydrocarbons to complex molecules. Notably, a HAT catalyst with additional substituents adjacent to a nitrogen atom further improved the site-selectivity. Mechanistic studies suggested that the N-substituent of the catalyst plays a crucial role, assisting in the generation of a dicationic aminium radical as an active species for the HAT process.


Synlett ◽  
2019 ◽  
Vol 31 (02) ◽  
pp. 102-116 ◽  
Author(s):  
Melanie A. Short ◽  
J. Miles Blackburn ◽  
Jennifer L. Roizen

Nitrogen-centered radicals are powerful reaction intermediates owing in part to their ability to guide position-selective C(sp3)–H functionalization reactions. Typically, these reactive species dictate the site of functionalization by preferentially engaging in 1,5-hydrogen-atom transfer (1,5-HAT) processes. Broadly relevant approaches to alter the site-selectivity of HAT pathways would be valuable because they could be paired with a variety of tactics to install diverse functional groups. Yet, until recently, there have been no generalizable strategies to modify the position-selectivity observed in these HAT processes. This Synpacts article reviews transformations in which nitrogen-centered radicals preferentially react through 1,6-HAT pathways. Specific attention will be focused on strategies that employ alcohol- and amine-anchored sulfamate esters and sulfamides as templates to achieve otherwise rare γ-selective functionalization reactions.1 Introduction2 Transformations that Rely on Structural Constraints or Weakened C–H Bonds to Favor 1,6-HAT Processes3 Sulfamate Esters Engage Selective 1,6-HAT Processes4 Expansion to 1,6-HAT Processes with Masked Amine Substrates5 Conclusions and Outlook


2021 ◽  
Author(s):  
Yangyang Shen ◽  
Franziska Schoenebeck ◽  
Ignacio Funes-Ardoiz ◽  
Tomislav Rovis

Trialkylamines are widely found in naturally-occurring alkaloids, synthetic agrochemicals, biological probes, and especially pharmaceuticals agents and pre-clinical candidates. Despite the recent breakthrough of catalytic alkylation of dialkylamines, the selective a-C(sp3 )–H bond functionalization of widely available trialkylamine scaffolds holds promise to streamline complex trialkylamine synthesis, accelerate drug discovery and execute late-stage pharmaceutical modification with complementary reactivity. However, the canonical methods always result in functionalization at the less-crowded site. Herein, we describe a solution to switch the reaction site through fundamentally overcoming the steric control that dominates such processes. By rapidly establishing an equilibrium between a-amino C(sp3 )-H bonds and a highly electrophilic thiol radical via reversible hydrogen atom transfer, we leverage a slower radical-trapping step with electron-deficient olefins to selectively forge a C(sp3 )-C(sp3 ) bond with the more-crowded a-amino radical, with the overall selectivity guided by Curtin-Hammett principle. This subtle reaction profile has unlocked a new strategic concept in direct C-H functionalization arena for forging C– C bonds from a diverse set of trialkylamines with high levels of site-selectivity and preparative utility. Simple correlation of site-selectivity and 13C NMR shift serves as a qualitative predictive guide. The broad consequences of this dynamic system, together with the ability to forge N-substituted quaternary carbon centers and implement late-stage functionalization techniques, holds tremendous potential to streamline complex trialkylamine synthesis and accelerate drug discovery


Sign in / Sign up

Export Citation Format

Share Document