Effect of Surface Reforming via O3 Treatment on the Electrochemical CO2 Reduction Activity of a Ag Cathode

2020 ◽  
Vol 3 (7) ◽  
pp. 6552-6560
Author(s):  
Masaatsu Ishida ◽  
Soichi Kikkawa ◽  
Kazutaka Hori ◽  
Kentaro Teramura ◽  
Hiroyuki Asakura ◽  
...  
2020 ◽  
Vol 3 (10) ◽  
pp. 9792-9798
Author(s):  
Wen Guo ◽  
Kyubin Shim ◽  
Sang-Mun Jung ◽  
Hye Su Kang ◽  
Yong-Tae Kim

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 602
Author(s):  
Xin Zhao ◽  
Minshu Du ◽  
Feng Liu

As the sole metal that could reduce CO2 to substantial amounts of hydrocarbons, Cu plays an important role in electrochemical CO2 reduction, despite its low energy efficiency. Surface morphology modification is an effective method to improve its reaction activity and selectivity. Different from the pretreated modification method, in which the catalysts self-reconstruction process was ignored, we present operando synthesis by simultaneous electro-dissolution and electro-redeposition of copper during the CO2 electroreduction process. Through controlling the cathodic potential and CO2 flow rate, various high-curvature morphologies including microclusters, microspheres, nanoneedles, and nanowhiskers have been obtained, for which the real-time activity and product distribution is analyzed. The best CO2 electro-reduction activity and favored C2H4 generation activity, with around 10% faradic efficiency, can be realized through extensively distributed copper nanowhiskers synthesized under 40 mL/min flow rate and −2.1 V potential.


ACS Catalysis ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Yanwei Lum ◽  
Youngkook Kwon ◽  
Peter Lobaccaro ◽  
Le Chen ◽  
Ezra Lee Clark ◽  
...  

2020 ◽  
Author(s):  
Sudarshan Vijay ◽  
Joseph Gauthier ◽  
Hendrik Heenen ◽  
Vanessa Jane Bukas ◽  
Henrik Høgh Kristoffersen ◽  
...  

<p>Electrochemical CO2 Reduction (CO2R) can potentially allow for the sustainable production of valuable fuels and chemicals. Recently, single atom catalysts on a 2D support have been shown to be a promising catalyst candidate. Using state-of-the-art methods, we develop a model for Fe doped graphene which rationalises several critical experimental observations: the contentious origin of the pH dependence of reactivity and the dependence of current-potential relationships on active site. We show that single atom catalysts have the unique ability to stabilise different dipoles associated with critical reaction intermediates, which translates to significant shifts in activity. This provides a new rational design principle and paves the way for rigorous computation-guided catalyst design of new single atom catalysts for CO2R.</p>


2017 ◽  
Vol 46 (1) ◽  
pp. 125-127 ◽  
Author(s):  
Naoki Yoshihara ◽  
Mai Arita ◽  
Masaru Noda

2020 ◽  
Author(s):  
Sudarshan Vijay ◽  
Joseph Gauthier ◽  
Hendrik Heenen ◽  
Vanessa Jane Bukas ◽  
Henrik Høgh Kristoffersen ◽  
...  

<p>Electrochemical CO2 Reduction (CO2R) can potentially allow for the sustainable production of valuable fuels and chemicals. Recently, single atom catalysts on a 2D support have been shown to be a promising catalyst candidate. Using state-of-the-art methods, we develop a model for Fe doped graphene which rationalises several critical experimental observations: the contentious origin of the pH dependence of reactivity and the dependence of current-potential relationships on active site. We show that single atom catalysts have the unique ability to stabilise different dipoles associated with critical reaction intermediates, which translates to significant shifts in activity. This provides a new rational design principle and paves the way for rigorous computation-guided catalyst design of new single atom catalysts for CO2R.</p>


2020 ◽  
Author(s):  
Sudarshan Vijay ◽  
Joseph Gauthier ◽  
Hendrik Heenen ◽  
Vanessa Jane Bukas ◽  
Henrik Høgh Kristoffersen ◽  
...  

<p>Electrochemical CO2 Reduction (CO2R) can potentially allow for the sustainable production of valuable fuels and chemicals. Recently, single atom catalysts on a 2D support have been shown to be a promising catalyst candidate. Using state-of-the-art methods, we develop a model for Fe doped graphene which rationalises several critical experimental observations: the contentious origin of the pH dependence of reactivity and the dependence of current-potential relationships on active site. We show that single atom catalysts have the unique ability to stabilise different dipoles associated with critical reaction intermediates, which translates to significant shifts in activity. This provides a new rational design principle and paves the way for rigorous computation-guided catalyst design of new single atom catalysts for CO2R.</p>


Sign in / Sign up

Export Citation Format

Share Document