Interplay Among Dealloying, Ostwald Ripening, and Coalescence in PtXNi100–X Bimetallic Alloys under Fuel-Cell-Related Conditions

ACS Catalysis ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 11360-11370
Author(s):  
Marco Bogar ◽  
Yurii Yakovlev ◽  
Daniel John Seale Sandbeck ◽  
Serhiy Cherevko ◽  
Iva Matolínová ◽  
...  
2021 ◽  
Author(s):  
Johanna Schröder ◽  
Rebecca K. Pittkowski ◽  
Isaac Martens ◽  
Raphaël Chattot ◽  
Jakub Drnec ◽  
...  

The combination of operando small- and wide-angle X-ray scattering (SAXS, WAXS) is here presented to provide insights into the changes in mean particle sizes and phase fractions in fuel cell catalyst layers during accelerated stress tests (ASTs). As fuel cell catalyst, a bimodal Pt/C catalyst was chosen that consists of two distinguishable particle size populations. The presence of the two different sizes should favor and uncover electrochemical Ostwald ripening as degradation mechanism, i.e., the growth of larger particles in the Pt/C catalyst at the expense of the smaller particles via the formation of ionic metal species. However, instead of electrochemical Ostwald ripening, the results point toward classical Ostwald ripening via the local diffusion of metal atoms on the support. Furthermore, the grazing incidence mode provides insights into the catalyst layer depth-dependent degradation. While the larger particles show the same particle size changes close to the electrolyte-catalyst interface and within the catalyst layer, the smaller Pt nanoparticles exhibit a slightly decreased size at the electrolyte-catalyst interface. During the AST, both size populations increase in size, independent of the depth. Their phase fraction, i.e., the ratio of smaller to larger size population, however, exhibits a depth-dependent behavior. While at the electrolyte-catalyst interface the phase fraction of the smaller size population decreases, it increases in the inner catalyst layer. The results of a depth-dependent degradation suggest that employing a depth-dependent catalyst design can be used for future improvement of catalyst stability.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 779-789 ◽  
Author(s):  
Ambrož Kregar ◽  
Tomaž Katrašnik

Abstract The limited durability of hydrogen fuel cells is one of the main obstacles in their wider adoption as a clean alternative technology for small scale electricity production. The Ostwald ripening of catalyst material is recognized as one of the main unavoidable degradation processes deteriorating the fuel cell performance and shortening its lifetime. The paper systematically studies how the modeling approach towards the electrochemically driven Ostwald ripening in the fuel cell catalyst differs from the classical diffusion driven models and highlights how these differences affect the resulting evolution of particle size distribution. At moderately low electric potential, root-law growth of mean particle size is observed with linear relation between mean particle size and standard deviation of particle size distribution, similar to Lifshitz-Slyozov-Wagner theory, but with broader and less skewed distribution. In case of high electric potential, rapid particle growth regime is observed and qualitatively described by redeposition of platinum from a highly oversaturated solution, revealing the deficiencies of the existing platinum degradation models at describing the Ostwald ripening in the fuel cells at high electric potentials. Several improvements to the established models of platinum degradation in fuel cell catalysts are proposed, aimed at better description of the diffusion processes involved in particle growth due to Ostwald ripening.


2021 ◽  
Author(s):  
Johanna Schröder ◽  
Rebecca K. Pittkowski ◽  
Isaac Martens ◽  
Raphaël Chattot ◽  
Jakub Drnec ◽  
...  

The combination of operando small- and wide-angle X-ray scattering (SAXS, WAXS) is here presented to provide insights into the changes in mean particle sizes and phase fractions in fuel cell catalyst layers during accelerated stress tests (ASTs). As fuel cell catalyst, a bimodal Pt/C catalyst was chosen that consists of two distinguishable particle size populations. The presence of the two different sizes should favor and uncover electrochemical Ostwald ripening as degradation mechanism, i.e., the growth of larger particles in the Pt/C catalyst at the expense of the smaller particles via the formation of ionic metal species. However, instead of electrochemical Ostwald ripening, the results point toward classical Ostwald ripening via the local diffusion of metal atoms on the support. Furthermore, the grazing incidence mode provides insights into the catalyst layer depth-dependent degradation. While the larger particles show the same particle size changes close to the electrolyte-catalyst interface and within the catalyst layer, the smaller Pt nanoparticles exhibit a slightly decreased size at the electrolyte-catalyst interface. During the AST, both size populations increase in size, independent of the depth. Their phase fraction, i.e., the ratio of smaller to larger size population, however, exhibits a depth-dependent behavior. While at the electrolyte-catalyst interface the phase fraction of the smaller size population decreases, it increases in the inner catalyst layer. The results of a depth-dependent degradation suggest that employing a depth-dependent catalyst design can be used for future improvement of catalyst stability.


2020 ◽  
Vol 56 (88) ◽  
pp. 13611-13614
Author(s):  
Jialu Wang ◽  
Xian Zhang ◽  
Guozhong Wang ◽  
Yunxia Zhang ◽  
Haimin Zhang

A new type of direct 5-hydroxymethylfurfural (HMF) oxidation fuel cell based on a bifunctional PtNiSx/CB catalyst not only transformed chemical energy into electric energy but also converted HMF into value-added 2,5-furandicarboxylic (FDCA).


Nature ◽  
2003 ◽  
Author(s):  
Philip Ball
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document