Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO2, IrO2) for Acidic Water Splitting

ACS Catalysis ◽  
2021 ◽  
pp. 8848-8871
Author(s):  
Herbert Over
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zheng Wang ◽  
Ying Luo ◽  
Takashi Hisatomi ◽  
Junie Jhon M. Vequizo ◽  
Sayaka Suzuki ◽  
...  

AbstractOxynitride photocatalysts hold promise for renewable solar hydrogen production via water splitting owing to their intense visible light absorption. Cocatalyst loading is essential for activation of such oxynitride photocatalysts. However, cocatalyst nanoparticles form aggregates and exhibit weak interaction with photocatalysts, which prevents eliciting their intrinsic photocatalytic performance. Here, we demonstrate efficient utilization of photoexcited electrons in a single-crystalline particulate BaTaO2N photocatalyst prepared with the assistance of RbCl flux for H2 evolution reactions via sequential decoration of Pt cocatalyst by impregnation-reduction followed by site-selective photodeposition. The Pt-loaded BaTaO2N photocatalyst evolves H2 over 100 times more efficiently than before, with an apparent quantum yield of 6.8% at the wavelength of 420 nm, from a methanol aqueous solution, and a solar-to-hydrogen energy conversion efficiency of 0.24% in Z-scheme water splitting. Enabling uniform dispersion and intimate contact of cocatalyst nanoparticles on single-crystalline narrow-bandgap particulate photocatalysts is a key to efficient solar-to-chemical energy conversion.


Nanoscale ◽  
2021 ◽  
Author(s):  
Benedict Osuagwu ◽  
Waseen Raza ◽  
Alexander Tesler ◽  
Patrik Schmuki

Titanium dioxide (TiO2) is the most frequently studied semiconducting material for photocatalytic water splitting. One of the favored forms of TiO2 for photocatalytic applications is layers of erected single-crystalline anatase...


1998 ◽  
pp. 623-626
Author(s):  
Masato Hasegawa ◽  
Yutaka Yoshida ◽  
Yoshiaki Ito ◽  
Morihiro Iwata ◽  
Junichi Kawashima ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tiangui You ◽  
Kai Huang ◽  
Xiaomeng Zhao ◽  
Ailun Yi ◽  
Chen Chen ◽  
...  

AbstractThe abilities to fabricate wafer scale single crystalline oxide thin films on metallic substrates and to locally engineer their resistive switching characteristics not only contribute to the fundamental investigations of the resistive switching mechanism but also promote the practical applications of resistive switching devices. Here, wafer scale LiNbO3 (LNO) single crystalline thin films are fabricated on Pt/SiO2/LNO substrates by ion slicing with wafer bonding. The lattice strain of the LNO single crystalline thin films can be tuned by He implantation as indicated by XRD measurements. After He implantation, the LNO single crystalline thin films show self-rectifying filamentary resistive switching behaviors, which is interpreted by a model that the local conductive filaments only connect/disconnect with the bottom interface while the top interface maintains the Schottky contact. Thanks to the homogeneous distribution of defects in single crystalline thin films, highly reproducible and uniform self-rectifying resistive switching with large on/off ratio over four order of magnitude was achieved. Multilevel resistive switching can be obtained by varying the compliance current or by using different magnitude of writing voltage.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Dongkyu Lee ◽  
Xiang Gao ◽  
Lisha Fan ◽  
Er-Jia Guo ◽  
Thomas O. Farmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document