scholarly journals How Membrane Geometry Regulates Protein Sorting Independently of Mean Curvature

2020 ◽  
Vol 6 (7) ◽  
pp. 1159-1168 ◽  
Author(s):  
Jannik B. Larsen ◽  
Kadla R. Rosholm ◽  
Celeste Kennard ◽  
Søren L. Pedersen ◽  
Henrik K. Munch ◽  
...  
Author(s):  
Joseph A. Zasadzinski

At low weight fractions, many surfactant and biological amphiphiles form dispersions of lamellar liquid crystalline liposomes in water. Amphiphile molecules tend to align themselves in parallel bilayers which are free to bend. Bilayers must form closed surfaces to separate hydrophobic and hydrophilic domains completely. Continuum theory of liquid crystals requires that the constant spacing of bilayer surfaces be maintained except at singularities of no more than line extent. Maxwell demonstrated that only two types of closed surfaces can satisfy this constraint: concentric spheres and Dupin cyclides. Dupin cyclides (Figure 1) are parallel closed surfaces which have a conjugate ellipse (r1) and hyperbola (r2) as singularities in the bilayer spacing. Any straight line drawn from a point on the ellipse to a point on the hyperbola is normal to every surface it intersects (broken lines in Figure 1). A simple example, and limiting case, is a family of concentric tori (Figure 1b).To distinguish between the allowable arrangements, freeze fracture TEM micrographs of representative biological (L-α phosphotidylcholine: L-α PC) and surfactant (sodium heptylnonyl benzenesulfonate: SHBS)liposomes are compared to mathematically derived sections of Dupin cyclides and concentric spheres.


Sign in / Sign up

Export Citation Format

Share Document