Faculty Opinions recommendation of SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane.

Author(s):  
Martin Pool
2007 ◽  
Vol 2007 (Spring) ◽  
Author(s):  
Kiran Maass ◽  
Marcel Fischer ◽  
Ebru Ercan ◽  
Teshager Bitew ◽  
Matthias Seedorf

2005 ◽  
Vol 169 (4) ◽  
pp. 613-622 ◽  
Author(s):  
Christoph Jüschke ◽  
Andrea Wächter ◽  
Blanche Schwappach ◽  
Matthias Seedorf

Classic studies of temperature-sensitive secretory (sec) mutants have demonstrated that secreted and plasma membrane proteins follow a common SEC pathway via the endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles to the cell periphery. The yeast protein Ist2p, which is synthesized from a localized mRNA, travels from the ER to the plasma membrane via a novel route that operates independently of the formation of coat protein complex II–coated vesicles. In this study, we show that the COOH-terminal domain of Ist2p is necessary and sufficient to mediate SEC18-independent sorting when it is positioned at the COOH terminus of different integral membrane proteins and exposed to the cytoplasm. This domain functions as a dominant plasma membrane localization determinant that overrides other protein sorting signals. Based on these observations, we suggest a local synthesis of Ist2p at cortical ER sites, from where the protein is sorted by a novel mechanism to the plasma membrane.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1912-1919 ◽  
Author(s):  
James C.-M. Lee ◽  
J. Aura Gimm ◽  
Annie J. Lo ◽  
Mark J. Koury ◽  
Sharon W. Krauss ◽  
...  

AbstractDuring erythroblast enucleation, nuclei surrounded by plasma membrane separate from erythroblast cytoplasm. A key aspect of this process is sorting of erythroblast plasma membrane components to reticulocytes and expelled nuclei. Although it is known that cytoskeletal elements actin and spectrin partition to reticulocytes, little is understood about molecular mechanisms governing plasma membrane protein sorting. We chose glycophorin A (GPA) as a model integral protein to begin investigating protein-sorting mechanisms. Using immunofluorescence microscopy and Western blotting we found that GPA sorted predominantly to reticulocytes. We hypothesized that the degree of skeletal linkage might control the sorting pattern of transmembrane proteins. To explore this hypothesis, we quantified the extent of GPA association to the cytoskeleton in erythroblasts, young reticulocytes, and mature erythrocytes using fluorescence imaged microdeformation (FIMD) and observed that GPA underwent dramatic reorganization during terminal differentiation. We discovered that GPA was more connected to the membrane cytoskeleton, either directly or indirectly, in erythroblasts and young reticulocytes than in mature cells. We conclude that skeletal protein association can regulate protein sorting during enucleation. Further, we suggest that the enhanced rigidity of reticulocyte membranes observed in earlier investigations results, at least in part, from increased connectivity of GPA with the spectrin-based skeleton.


1992 ◽  
Vol 116 (3) ◽  
pp. 577-583 ◽  
Author(s):  
K Mostov ◽  
G Apodaca ◽  
B Aroeti ◽  
C Okamoto

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1559-1559
Author(s):  
Marcela A. Salomao ◽  
Sarah Short ◽  
Gloria Lee ◽  
Xiuli An ◽  
Mohandas Narla ◽  
...  

Abstract During erythroblast enucleation, nuclei surrounded by plasma membrane separate from erythroblast cytoplasm. A key aspect of this process is sorting of membrane components to plasma membranes surrounding expelled nuclei and young reticulocytes. This protein partitioning performs a crucial role in regulating the protein content of reticulocyte plasma membranes. Although it is known that cytoskeletal actin, spectrin and protein 4.1R distribute to reticulocytes, little is known about the sorting patterns of erythroblast transmembrane proteins. In hereditary spherocytosis (HS) and hereditary elliptocytosis (HE), erythrocytes contain well-described deficiencies of various transmembrane proteins, in addition to those encoded by the mutant genes. For example, elliptocytic human and murine erythrocytes resulting from mutations in the 4.1R gene lack not only protein 4.1R but also transmembrane protein glycophorin C (GPC), known to be a 4.1R binding partner with a key role in linking cytoskeleton to bilayer. Similarly, in HS resulting from mutations in the ankyrin gene, deficiencies of band 3, Rh and GPA have been documented. Various molecular mechanisms could explain deficiencies of membrane proteins in HS and HE erythrocytes including: perturbed trafficking to the erythroblast membrane; aberrant protein sorting during erythroblast enucleation; and selective loss during reticulocyte membrane remodeling. We explored whether aberrant protein sorting during enucleation might be responsible for GPC deficiency in HE. First we performed immunochemical analysis of the sorting pattern of GPC using highly purified extruded nuclei and immature reticulocytes derived from terminally differentiated murine erythroblast cultures. Proteins from equivalent numbers of expelled nuclei and reticulocytes were analyzed by Western blotting. Using antibodies specific for GPC we determined that 90% of GPC sorted to reticulocyte plasma membranes. To validate these results we used live cell, three-color immunofluorescent microscopy and analyzed enucleating erythroblasts, reticulocytes and extruded nuclei from freshly harvested murine wild type bone marrow. Independently confirming the Western blot data, we found that GPC sorted almost exclusively to reticulocytes with little or no GPC in association with nuclear plasma membrane. Strikingly, in 4.1R null erythroblasts GPC was distributed exclusively to expelled nuclei. These findings unequivocally establish that skeletal protein 4.1R is critical for normal sorting of GPC to young reticulocytes and provide clear evidence that specific skeletal protein associations can regulate protein sorting during enucleation. Moreover, our data provide a molecular explanation for the underlying basis of GPC deficiency observed in 4.1R-deficient individuals with HE. We speculate that aberrant protein sorting may be a prevalent mechanism for the deficiencies of various membrane proteins in HS and HE and that their differential loss could contribute to the variable phenotypic expression of these hemolytic disorders.


2008 ◽  
Vol 19 (7) ◽  
pp. 2962-2972 ◽  
Author(s):  
April L. Risinger ◽  
Chris A. Kaiser

The high capacity general amino acid permease, Gap1p, in Saccharomyces cerevisiae is distributed between the plasma membrane and internal compartments according to availability of amino acids. When internal amino acid levels are low, Gap1p is localized to the plasma membrane where it imports available amino acids from the medium. When sufficient amino acids are imported, Gap1p at the plasma membrane is endocytosed and newly synthesized Gap1p is delivered to the vacuole; both sorting steps require Gap1p ubiquitination. Although it has been suggested that identical trans-acting factors and Gap1p ubiquitin acceptor sites are involved in both processes, we define unique requirements for each of the ubiquitin-mediated sorting steps involved in delivery of Gap1p to the vacuole upon amino acid addition. Our finding that distinct ubiquitin-mediated sorting steps employ unique trans-acting factors, ubiquitination sites on Gap1p, and types of ubiquitination demonstrates a previously unrecognized level of specificity in ubiquitin-mediated protein sorting.


Sign in / Sign up

Export Citation Format

Share Document