Machine Learning for Drug Development

2022 ◽  
Author(s):  
Cesar de la Fuente Nunez ◽  
Marcelo Melo ◽  
Jacqueline Maasch
2014 ◽  
Vol 14 (16) ◽  
pp. 1913-1922 ◽  
Author(s):  
Dimitar Dobchev ◽  
Girinath Pillai ◽  
Mati Karelson

2020 ◽  
Vol 107 (4) ◽  
pp. 726-729 ◽  
Author(s):  
Qi Liu ◽  
Hao Zhu ◽  
Chao Liu ◽  
Daphney Jean ◽  
Shiew‐Mei Huang ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ann-Marie Mallon ◽  
Dieter A. Häring ◽  
Frank Dahlke ◽  
Piet Aarden ◽  
Soroosh Afyouni ◽  
...  

Abstract Background Novartis and the University of Oxford’s Big Data Institute (BDI) have established a research alliance with the aim to improve health care and drug development by making it more efficient and targeted. Using a combination of the latest statistical machine learning technology with an innovative IT platform developed to manage large volumes of anonymised data from numerous data sources and types we plan to identify novel patterns with clinical relevance which cannot be detected by humans alone to identify phenotypes and early predictors of patient disease activity and progression. Method The collaboration focuses on highly complex autoimmune diseases and develops a computational framework to assemble a research-ready dataset across numerous modalities. For the Multiple Sclerosis (MS) project, the collaboration has anonymised and integrated phase II to phase IV clinical and imaging trial data from ≈35,000 patients across all clinical phenotypes and collected in more than 2200 centres worldwide. For the “IL-17” project, the collaboration has anonymised and integrated clinical and imaging data from over 30 phase II and III Cosentyx clinical trials including more than 15,000 patients, suffering from four autoimmune disorders (Psoriasis, Axial Spondyloarthritis, Psoriatic arthritis (PsA) and Rheumatoid arthritis (RA)). Results A fundamental component of successful data analysis and the collaborative development of novel machine learning methods on these rich data sets has been the construction of a research informatics framework that can capture the data at regular intervals where images could be anonymised and integrated with the de-identified clinical data, quality controlled and compiled into a research-ready relational database which would then be available to multi-disciplinary analysts. The collaborative development from a group of software developers, data wranglers, statisticians, clinicians, and domain scientists across both organisations has been key. This framework is innovative, as it facilitates collaborative data management and makes a complicated clinical trial data set from a pharmaceutical company available to academic researchers who become associated with the project. Conclusions An informatics framework has been developed to capture clinical trial data into a pipeline of anonymisation, quality control, data exploration, and subsequent integration into a database. Establishing this framework has been integral to the development of analytical tools.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aleksei Tiulpin ◽  
Stefan Klein ◽  
Sita M. A. Bierma-Zeinstra ◽  
Jérôme Thevenot ◽  
Esa Rahtu ◽  
...  

AbstractKnee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilises raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78–0.81) and Average Precision (AP) of 0.68 (0.66–0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74–0.77) and AP of 0.62 (0.60–0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalised therapeutic plans.


2019 ◽  
pp. 1-10 ◽  
Author(s):  
Guillaume Beinse ◽  
Virgile Tellier ◽  
Valentin Charvet ◽  
Eric Deutsch ◽  
Isabelle Borget ◽  
...  

PURPOSE Drug development in oncology currently is facing a conjunction of an increasing number of antineoplastic agents (ANAs) candidate for phase I clinical trials (P1CTs) and an important attrition rate for final approval. We aimed to develop a machine learning algorithm (RESOLVED2) to predict drug development outcome, which could support early go/no-go decisions after P1CTs by better selection of drugs suitable for further development. METHODS PubMed abstracts of P1CTs reporting on ANAs were used together with pharmacologic data from the DrugBank5.0 database to model time to US Food and Drug Administration (FDA) approval (FDA approval-free survival) since the first P1CT publication. The RESOLVED2 model was trained with machine learning methods. Its performance was evaluated on an independent test set with weighted concordance index (IPCW). RESULTS We identified 462 ANAs from PubMed that matched with DrugBank5.0 (P1CT publication dates 1972 to 2017). Among 1,411 variables, 28 were used by RESOLVED2 to model the FDA approval-free survival, with an IPCW of 0.89 on the independent test set. RESOLVED2 outperformed a model that was based on efficacy/toxicity (IPCW, 0.69). In the test set at 6 years of follow-up, 73% (95% CI, 49% to 86%) of drugs predicted to be approved were approved, whereas 92% (95% CI, 87% to 98%) of drugs predicted to be nonapproved were still not approved (log-rank P < .001). A predicted approved drug was 16 times more likely to be approved than a predicted nonapproved drug (hazard ratio, 16.4; 95% CI, 8.40 to 32.2). CONCLUSION As soon as P1CT completion, RESOLVED2 can predict accurately the time to FDA approval. We provide the proof of concept that drug development outcome can be predicted by machine learning strategies.


2020 ◽  
Vol 18 ◽  
pp. 241-252 ◽  
Author(s):  
Clémence Réda ◽  
Emilie Kaufmann ◽  
Andrée Delahaye-Duriez

2020 ◽  
Vol 21 (10) ◽  
pp. 790-803 ◽  
Author(s):  
Dongrui Gao ◽  
Qingyuan Chen ◽  
Yuanqi Zeng ◽  
Meng Jiang ◽  
Yongqing Zhang

Drug target discovery is a critical step in drug development. It is the basis of modern drug development because it determines the target molecules related to specific diseases in advance. Predicting drug targets by computational methods saves a great deal of financial and material resources compared to in vitro experiments. Therefore, several computational methods for drug target discovery have been designed. Recently, machine learning (ML) methods in biomedicine have developed rapidly. In this paper, we present an overview of drug target discovery methods based on machine learning. Considering that some machine learning methods integrate network analysis to predict drug targets, network-based methods are also introduced in this article. Finally, the challenges and future outlook of drug target discovery are discussed.


Sign in / Sign up

Export Citation Format

Share Document