Effect of Pressure on Deuterium Isotope Effects of Yeast Alcohol Dehydrogenase:  Evidence for Mechanical Models of Catalysis†

Biochemistry ◽  
2000 ◽  
Vol 39 (9) ◽  
pp. 2406-2412 ◽  
Author(s):  
Dexter B. Northrop ◽  
Yong-Kweon Cho
1966 ◽  
Vol 21 (6) ◽  
pp. 540-546 ◽  
Author(s):  
Dieter Palm

Unexpectedly, the isotope effect of ethanol-1-Τ as a substrate of yeast alcohol dehydrogenase, increases with rising temperature from kH/kT = 3.2 at 5 —15°C to 3.8—4.7 at 20 —35 °C. This suggests a change of the rate controlling step as proposed by MÜLLER-HILL and WALLENFELS, who investigated the temperature dependence of the activation energies in this temperature range. A comparison of the affinities of propanol and butanol with the isotope effects of the corresponding tritium labelled compounds (propanol-1-Τ 6.7 at 25 °C, butanol-1-Τ 6.8 at 25 °C) supports the proposal, that during substrate binding, there must be a direct interaction between the enzyme complex and hydrogen which is removed in the reaction. These influences are less pronounced for the ethanol homologues which are bound less tightly to the enzyme. Therefore the H transfering step proper gives a greater contribution to the overall experimental isotope effect.


Sign in / Sign up

Export Citation Format

Share Document