Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme-catalyzed oxidation of aromatic alcohols

Biochemistry ◽  
1976 ◽  
Vol 15 (9) ◽  
pp. 2018-2026 ◽  
Author(s):  
Judith P. Klinman
2003 ◽  
Vol 68 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Vladimir Leskovac ◽  
Svetlana Trivic ◽  
Draginja Pericin

In this work, all the rate constants in the kinetic mechanism of the yeast alcohol dehydrogenase-catalyzed oxidation of ethanol by NAD+, at pH 7.0, 25 ?C, have been estimated. The determination of the individual rate constants was achieved by fitting the reaction progress curves to the experimental data, using the procedures of the FITSIM and KINSIM software package of Carl Frieden. This work is the first report in the literature showing the internal equilibrium constants for the isomerization of the enzyme-NAD+ complex in yeast alcohol dehydrogenase-catalyzed reactions.


1966 ◽  
Vol 21 (6) ◽  
pp. 540-546 ◽  
Author(s):  
Dieter Palm

Unexpectedly, the isotope effect of ethanol-1-Τ as a substrate of yeast alcohol dehydrogenase, increases with rising temperature from kH/kT = 3.2 at 5 —15°C to 3.8—4.7 at 20 —35 °C. This suggests a change of the rate controlling step as proposed by MÜLLER-HILL and WALLENFELS, who investigated the temperature dependence of the activation energies in this temperature range. A comparison of the affinities of propanol and butanol with the isotope effects of the corresponding tritium labelled compounds (propanol-1-Τ 6.7 at 25 °C, butanol-1-Τ 6.8 at 25 °C) supports the proposal, that during substrate binding, there must be a direct interaction between the enzyme complex and hydrogen which is removed in the reaction. These influences are less pronounced for the ethanol homologues which are bound less tightly to the enzyme. Therefore the H transfering step proper gives a greater contribution to the overall experimental isotope effect.


Sign in / Sign up

Export Citation Format

Share Document