Dendritic Pyridine-Functionalized Polyesters and Their Polycationic Hydrogen Bonded Picrates:  Synthesis and X-ray Structural Study of Weak Hydrogen Bonding

2003 ◽  
Vol 3 (3) ◽  
pp. 339-353 ◽  
Author(s):  
Kalle I. Nättinen ◽  
Kari Rissanen
2002 ◽  
Vol 66 (3) ◽  
pp. 431-440 ◽  
Author(s):  
M. D. Welch ◽  
W. A. Crichton

AbstractThe equation of state of synthetic deuterated burtite, CaSn(OD)6, has been determined to 7.25 GPa at 298 K by synchrotron X-ray powder diffraction. Fitting to a third-order Birch-Murnaghan equation of state gives K0 = 44.7(9) GPa and K0′ = 5.3(4). A second-order fit gives K0 = 47.4(4) GPa. Within experimental error the two fits are indistinguishable over the pressure range studied. The decrease in the a parameter with pressure is smooth and no phase transitions were observed. Burtite is much more compressible (by a factor of three or four) than CaSnO3 and CdSnO3 perovskites, indicating that the absence of a cavity cation has a major effect upon the compressibility of the octahedral framework. Burtite is also markedly more compressible than the closely-related mineral stottite FeGe(OH)6 (K0 = 78 GPa). Their different compressibilities correlate with the relative compressibilities of stannate and germanate perovskites. Although different octahedral compressions are likely to be the primary reason for the different compressibilities of burtite and stottite, we also consider the possible secondary role of hydrogen-bonding topology in affecting the compressibilities of protonated octahedral frameworks. Burtite and stottite have different hydrogen-bonding topologies due to their different octahedral-tilt system. Burtite, space group Pn3̄ and tilt system a+a+a+, has a hydrogen-bonded network of linked four-membered rings of O-H…O linkages, whereas stottite, space group P42/n and tilt system a+a+c−, has <100> O-H…O crankshafts and isolated four-membered rings. These different hydrogen-bonded configurations lead to different bracing of the empty cavity sites by the O-H…O linkages and very different hydrogen-bonding connectivities in these two minerals that may also enhance the difference between their compressibilities.


2004 ◽  
Vol 82 (2) ◽  
pp. 386-398 ◽  
Author(s):  
Dominic Laliberté ◽  
Thierry Maris ◽  
James D Wuest

Tetraphenylmethane, tetraphenylsilane, and simple derivatives with substituents that do not engage in hydrogen bonding typically crystallize as close-packed structures with essentially no space available for the inclusion of guests. In contrast, derivatives with hydrogen-bonding groups are known to favor the formation of open networks that include significant amounts of guests. To explore this phenomenon, we synthesized six new derivatives 5a–5e and 6a of tetraphenylmethane and tetraphenylsilane with urethane and urea groups at the para positions, crystallized the compounds, and determined their structures by X-ray crystallography. As expected, all six compounds crystallize to form porous three-dimensional hydrogen-bonded networks. In the case of tetraurea 5e, 66% of the volume of the crystals is accessible to guests, and guests can be exchanged in single crystals without loss of crystallinity. Of special note are: (i) the use of tetrakis(4-isocyanatophenyl)methane (1f) as a precursor for making enantiomerically pure tetraurethanes and tetraureas, including compounds 5b, 5c; and (ii) their subsequent crystallization to give porous chiral hydrogen-bonded networks. Such materials promise to include chiral guests enantioselectively and to be useful in the separation of racemates, asymmetric catalysis, and other applications.Key words: crystal engineering, molecular tectonics, hydrogen bonding, networks, porosity, urethanes, ureas, tetraphenylmethane, tetraphenylsilane.


1993 ◽  
Vol 46 (7) ◽  
pp. 1093 ◽  
Author(s):  
TW Jackson ◽  
M Kojima ◽  
RM Lambrecht

The complexes oxo (1,1,8,8-tetraethyl-3,6-diazaoctane-1,8-dithiolato)rhenium[ ReO ( tedadt )], oxo (1,1,8,8-tetraethyl-4,4-dimethyl-3,6-diazaoctane-1,8-dithiolato)rhenium [ ReO ( tedmdadt )] and (1,1,4,4,8,8-hexamethyl-3,6-diazaoctane-1,8-dithiolato) oxorhenium [ ReO ( hmdadt )] were prepared. The crystal structure of the complex ReO ( tedadt ) was determined by X-ray crystallography to be a hydrogen-bonded dimer . This is the first example of intermolecular hydrogen bonding in rhenium diamino dithiolate ( dadt ) complexes.


CrystEngComm ◽  
2004 ◽  
Vol 6 (91) ◽  
pp. 559-566 ◽  
Author(s):  
Jarmo Ropponen ◽  
Kalle Nättinen ◽  
Manu Lahtinen ◽  
Kari Rissanen

2004 ◽  
Vol 60 (5) ◽  
pp. 598-608 ◽  
Author(s):  
Orde Quentin Munro ◽  
Lynette Mariah

The single-crystal X-ray diffraction analysis of 2-{[(4-nitrophenoxy)sulfonyl]oxy}phenyl 4-nitrophenyl sulfate (4) reveals that an interesting intermolecular or extended structure (a one-dimensional hydrogen-bonded polymer) is formed because of pairs of intermolecular (aryl)C—H...O(nitro) hydrogen bonds between the C 2 symmetry monomer units. The axis of the hydrogen-bonded polymer runs co-linear with the [101] face diagonal of the monoclinic unit cell. Molecular mechanics calculations using a modified version of the MM+ force field and a random conformational search algorithm have been used to locate the important low-energy in vacuo conformations of (4). The MM-calculated conformation of (4) that most closely matches the X-ray structure lies some 26.5 kJ mol−1 higher in energy than the global minimum-energy conformation, consistent with the notion that the crystallographically observed molecular architecture of (4) is a local energy minimum in the absence of its crystal lattice environment. Since the X-ray conformation of (4) was correctly calculated only when all of the neighbouring molecules in the crystal lattice were included in the simulation, hydrogen bonding and other non-bonded interactions in the crystal lattice clearly dictate the experimentally observed conformation of (4). Quantum chemical calculations (AM1 method) confirm the critical role played by the intermolecular (aryl)C—H...O(nitro) hydrogen bonds in controlling the crystallographically observed conformation of (4) and show that self-recognition in this system by hydrogen bonding is favoured on electrostatic grounds. Collectively, the molecular simulations suggest that because the lowest-energy molecular conformation of (4) does not permit the formation of an extended hydrogen-bonded `supramolecular' structure, it is not the preferred conformation in the crystalline solid state.


2013 ◽  
Vol 17 (08n09) ◽  
pp. 712-721 ◽  
Author(s):  
James T. Engle ◽  
Ashley N. Allison ◽  
Joshua M. Standard ◽  
Ingrid-Suzy Tamgho ◽  
Christopher J. Ziegler

This report presents the single crystal X-ray structures of several substituted isoindolines that have been frequently used as starting materials for phthalocyanines, phthalocyanine analogs and related chelates. The structures of 1,3-diiminoisoindoline (1), 1,3-bis(hydroxyimino)isoindoline (2), 1,4-diaminophthalazine (3), 1,1,3-trichloroisoindoline (4) and 3-imino-1-oxoisoindoline (5) are reported; compounds 2 and 3 are synthesized from diiminoisoindoline (1) and 4 and 5 are produced from phthalimide. All five compounds are planar macrocycles, and localization of double bonds can be readily determined. We elucidated one of the known structures of 1 at low temperature, and observed two additional new structures of 1. For the crystal forms of 1 and compounds 2, 3, and 5, hydrogen bonding in the solid state was observed. Compounds 1, 2 and 3 form extended hydrogen bonded arrays in the solid state, whereas 5 forms discrete hydrogen bonded dimers.


2004 ◽  
Vol 6 (4) ◽  
pp. 185-192 ◽  
Author(s):  
Nathan D. McClenaghan ◽  
Dario M. Bassani

Recent advances in the continuing study of [2+2] photodimerization reactions in supramolecular, non-covalent systems are presented. The covalent photocapture of small dynamic assemblies which are formed using weak hydrogen-bonding interactions between two different complementary units, barbiturates and melamines, is discussed. One unit serves as a photo-inert supramolecular template capable of bringing two photoactive units together using multiple hydrogen-bonds. The second type of unit unites the corresponding, complementary hydrogen-bonding motif with a photoactive unit. Irradiation of the supramolecular assemblies leads to photodimerization of adjacent units and generation of an imprinted site for the template. Moieties which are adapted to participate in photodimerization reactions are styrene, cinnamate, stilbene and fullerene units. The results are interpreted on the basis of topochemical reaction control.


2002 ◽  
Vol 57 (5) ◽  
pp. 534-546 ◽  
Author(s):  
Dagmar Henschel ◽  
Oliver Moers ◽  
Karna Wijaya ◽  
Andreas Wirth ◽  
Armand Blaschette ◽  
...  

In order to study weak hydrogen bonds originating from inductively activated C(sp3)-H donor groups, low-temperature X-ray structures are reported for three onium salts of general formula BH+(MeSO2)2N-, where BH+ is Me3N+CH2CH2OH (1; orthorhombic, space group P212121, Z′ = 1), Me3N+CH2C(O)OH (2; orthorhombic, P212121, Z′ = 1), or Me2HN+CH2CH2NMe2 (3; monoclinic, P21/c, Z′ = 1). The asymmetric units consist of cationanion pairs assembled by an O-H···O=S hydrogen bond in 1, an O-H···N- bond in 2, and an N+-H ··· N- bond in 3. The packings display a plethora of short interionic C(sp3)-H···O/N contacts that are geometrically consistent with weak hydrogen bonding; those taken into consideration have normalized parameters d(H ··· O) ≤ 269 pm, d(H···N) ≤ 257 pm and θ(C-H···O/N) ≥ 127°. The roles of the weak hydrogen bonds are as follows: In structures 1 and 3, the anions are associated into corrugated layers, which intercalate catemers of cations (1) or stacks of discrete cations (3), whereas structure 2 involves cation catemers surrounded by four anion catemers and vice versa; moreover, all cations are linked to adjacent anions by several weak hydrogen bonds (and to one anion in particular by the strong H bond). Among the cation-anion interactions, the N+(CH2-H···)3O tripod pattern arising in 1 and 2 is of special interest.


2017 ◽  
Vol 70 (5) ◽  
pp. 529 ◽  
Author(s):  
Hasti Iranmanesh ◽  
Kasun S. A. Arachchige ◽  
William A. Donald ◽  
Niamh Kyriacou ◽  
Chao Shen ◽  
...  

Four heteroleptic ruthenium(ii) complexes of 4′-functionalised 2,2′:6′,2′′-terpyridine are reported, along with their solid-state single-crystal X-ray structures. The complexes feature complementary hydrogen-bond donor (phenol) and acceptor (pyridyl) groups designed to assemble into one-dimensional polymers. In one example, the system obeys the programmed instructions to form a one-dimensional, self-complementary hydrogen-bonded polymer. In one other example, a water-bridged hydrogen-bonded polymer is formed. In the remaining two structures, aryl–aryl interactions dominate the intermolecular interactions, and outweigh the contribution of intermolecular hydrogen bonding.


RSC Advances ◽  
2014 ◽  
Vol 4 (28) ◽  
pp. 14513-14526 ◽  
Author(s):  
Kiu-Chor Sham ◽  
Chi-Chung Yee ◽  
Yi Pan ◽  
Kai-Chung Lau ◽  
Shek-Man Yiu ◽  
...  

Chiral polyphenyl-bridged bis(2,2′-bipyridine) ligands L2–4 give intense CD signals when protonated with tetrachloroferric acid or perchloric acid. X-ray crystal structure of [(L2)2H2](FeCl4)2 shows that a double-stranded helix stabilized by both interior and exterior hydrogen bonding is formed. Theoretical DFT calculations show that such stabilization exists in solution.


Sign in / Sign up

Export Citation Format

Share Document