crystal forms
Recently Published Documents


TOTAL DOCUMENTS

953
(FIVE YEARS 126)

H-INDEX

56
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Adjele Wilson ◽  
Elena A. Andreeva ◽  
Stanislaw Nizinski ◽  
Lea Talbot ◽  
Elisabeth Hartmann ◽  
...  

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCPs studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and the time scales on which these modifications affect photoactivation. The presence of a His-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.


2022 ◽  
Author(s):  
Gregory J. O. Beran ◽  
Isaac John Sugden ◽  
Chandler Greenwell ◽  
David Bowskill ◽  
Constantinos C. Pantelides ◽  
...  

With 12 crystal forms, 5-methyl-2-[(2-nitrophenyl) amino]-3-thiophenecabonitrile (a.k.a. ROY) holds the current record for the largest number of fully characterized organic crystal polymorphs. Four of these polymorphs were discovered or characterized since 2019,...


Author(s):  
Chunhong Yan ◽  
John S. Sack

The X-ray crystal structure of a human cardiac muscle troponin C/troponin I chimera has been determined in two different crystal forms and shows a conformation of the complex that differs from that previously observed by NMR. The chimera consists of the N-terminal domain of troponin C (cTnC; residues 1–80) fused to the switch region of troponin I (cTnI; residues 138–162). In both crystal forms, the cTnI residues form a six-turn α-helix that lays across the hydrophobic groove of an adjacent cTnC molecule in the crystal structure. In contrast to previous models, the cTnI helix runs in a parallel direction relative to the cTnC groove and completely blocks the calcium desensitizer binding site of the cTnC–cTnI interface.


Author(s):  
Zeen Yang ◽  
Yinghong Yang ◽  
Mengyuan Xia ◽  
Wenjuan Dai ◽  
Bingqing Zhu ◽  
...  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 241
Author(s):  
Vânia André ◽  
M. Teresa Duarte ◽  
Clara S. B. Gomes ◽  
Mafalda C. Sarraguça

In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry. The area with the most increased development is the synthesis of multicomponent crystal forms, with several groups synthesizing solvates, salts, and cocrystals in which the main objective was to improve physical properties of the active pharmaceutical ingredients. Recently, non-crystalline materials, such as ionic liquids and amorphous solid dispersions, have also been studied using mechanochemical methods. An area that is in expansion is the use of mechanochemical synthesis of bioinspired metal-organic frameworks with an emphasis in antibiotic coordination frameworks. The use of mechanochemistry for catalysis and organic and inorganic synthesis has also grown due to the synthetic advantages, ease of synthesis, scalability, sustainability, and, in the majority of cases, the superior properties of the synthesized materials. It can be easily concluded that mechanochemistry is expanding in Portugal in diverse research areas.


2021 ◽  
Vol 56 (4) ◽  
pp. 255-262
Author(s):  
U Habiba ◽  
A Alam ◽  
S Rahman ◽  
SUD Shamim ◽  
AA Piya

Paracetamol is a very popular medication used to treat pain and fever. IR spectra of paracetamol have been measured for powder crystals. Ab initio calculations of its equilibrium geometry and vibrational spectra were carried out for spectrum interpretation. Differences between the experimental IR spectra of crystalline samples have been analyzed. Variations of molecular structure from the isolated state to molecular crystal were estimated based on the difference between the optimized molecular parameters of free molecules and the experimental bond lengths and angles evaluated for the crystal forms of the title compounds. The role of hydrogen bonds in the structure of molecular crystals of paracetamol is investigated. Bangladesh J. Sci. Ind. Res.56(4), 255-262, 2021


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Pistor ◽  
C. Körner

AbstractGenerally, the evolution of metallic single crystals is based on crystal growth. The single crystal is either produced by growing a seed single crystal or by sophisticated grain selection processes followed by crystal growth. Here, we describe for the first time a fully new mechanism to generate single crystals based on thermo-mechanically induced texture formation during additive manufacturing. The single crystal develops due to two different mechanisms. The first step is a standard grain selection process due to directional solidification, leading to a pronounced fiber texture. The second and new mechanism bases on successive thermo-mechanically induced plastic deformations and texture formation in FCC crystals under compression. During this second step, the columnar grain structure transforms into a single crystal by rotation of individual grains. Thus, the single crystal forms step by step by merging the originally columnar grain structure. This novel, stress induced mechanism opens up completely new perspectives to fabricate single crystalline components and to accurately adjust the orientation according to the load.


Sign in / Sign up

Export Citation Format

Share Document