scholarly journals Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations

2014 ◽  
Vol 10 (4) ◽  
pp. 1638-1651 ◽  
Author(s):  
Filippo Lipparini ◽  
Louis Lagardère ◽  
Benjamin Stamm ◽  
Eric Cancès ◽  
Michael Schnieders ◽  
...  
2019 ◽  
Author(s):  
Frédéric Célerse ◽  
Louis Lagardere ◽  
Étienne Derat ◽  
Jean-Philip Piquemal

This paper is dedicated to the massively parallel implementation of Steered Molecular Dynamics in the Tinker-HP softwtare. It allows for direct comparisons of polarizable and non-polarizable simulations of realistic systems.


2019 ◽  
Author(s):  
Frédéric Célerse ◽  
Louis Lagardere ◽  
Étienne Derat ◽  
Jean-Philip Piquemal

This paper is dedicated to the massively parallel implementation of Steered Molecular Dynamics in the Tinker-HP softwtare. It allows for direct comparisons of polarizable and non-polarizable simulations of realistic systems.


ChemPhysChem ◽  
2005 ◽  
Vol 6 (9) ◽  
pp. 1788-1793 ◽  
Author(s):  
Jürg Hutter ◽  
Alessandro Curioni

MRS Advances ◽  
2017 ◽  
Vol 2 (29) ◽  
pp. 1571-1576
Author(s):  
Vinicius Splugues ◽  
Pedro Alves da Silva Autreto ◽  
Douglas S. Galvao

ABSTRACTThe advent of graphene created a revolution in materials science. Because of this there is a renewed interest in other carbon-based structures. Graphene is the ultimate (just one atom thick) membrane. It has been proposed that graphene can work as impermeable membrane to standard gases, such argon and helium. Graphene-like porous membranes, but presenting larger porosity and potential selectivity would have many technological applications. Biphenylene carbon (BPC), sometimes called graphenylene, is one of these structures. BPC is a porous two-dimensional (planar) allotrope carbon, with its pores resembling typical sieve cavities and/or some kind of zeolites. In this work, we have investigated the hydrogenation dynamics of BPC membranes under different conditions (hydrogenation plasma density, temperature, etc.). We have carried out an extensive study through fully atomistic molecular dynamics (MD) simulations using the reactive force field ReaxFF, as implemented in the well-known Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Our results show that the BPC hydrogenation processes exhibit very complex patterns and the formation of correlated domains (hydrogenated islands) observed in the case of graphene hydrogenation was also observed here. MD results also show that under hydrogenation BPC structure undergoes a change in its topology, the pores undergoing structural transformations and extensive hydrogenation can produce significant structural damages, with the formation of large defective areas and large structural holes, leading to structural collapse.


2018 ◽  
Vol 39 (22) ◽  
pp. 1806-1814 ◽  
Author(s):  
Murat Keçeli ◽  
Fabiano Corsetti ◽  
Carmen Campos ◽  
Jose E. Roman ◽  
Hong Zhang ◽  
...  

1997 ◽  
Vol 08 (05) ◽  
pp. 1131-1140 ◽  
Author(s):  
J. Stadler ◽  
R. Mikulla ◽  
H.-R. Trebin

We report on implementation and performance of the program IMD, designed for short range molecular dynamics simulations on massively parallel computers. After a short explanation of the cell-based algorithm, its extension to parallel computers as well as two variants of the communication scheme are discussed. We provide performance numbers for simulations of different sizes and compare them with values found in the literature. Finally we describe two applications, namely a very large scale simulation with more than 1.23×109 atoms, to our knowledge the largest published MD simulation up to this day and a simulation of a crack propagating in a two-dimensional quasicrystal.


Sign in / Sign up

Export Citation Format

Share Document