particle mesh ewald
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 14)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
You Xu ◽  
Jing Huang

AbstractThe pressure-temperature phase diagram is important to our understanding of the physics of biomolecules. Compared to studies on temperature effects, studies of the pressure dependence of protein dynamic are rather limited. Molecular dynamics (MD) simulations with fine-tuned force fields (FFs) offer a powerful tool to explore the influence of thermodynamic conditions on proteins. Here we evaluate the transferability of the CHARMM36m (C36m) protein force field at varied pressures compared with NMR data using ubiquitin as a model protein. The pressure dependences of J couplings for hydrogen bonds and order parameters for internal motion are in good agreement with experiment. We demonstrate that the C36m FF combined with the Lennard-Jones particle-mesh Ewald (LJ-PME) method is suitable for simulations in a wide range of temperature and pressure. As the ubiquitin remains stable up to 2500 bar, we identify the mobility and stability of different hydrogen bonds in response to pressure. Based on those results, C36m is expected to be applied to more proteins in the future to further investigate protein dynamics under elevated pressures.


Author(s):  
Lawrence C. Stewart ◽  
Carlo Pascoe ◽  
Emery Davis ◽  
Brian W. Sherman ◽  
Martin Herbordt ◽  
...  

2021 ◽  
Vol 154 (10) ◽  
pp. 104101
Author(s):  
Andrew C. Simmonett ◽  
Bernard R. Brooks
Keyword(s):  

2021 ◽  
Author(s):  
Yunhui Ge ◽  
David F. Hahn ◽  
David Mobley

<div><div><div><p>Relative free energy calculations are fast becoming a critical part of early stage pharmaceu- tical design, making it important to know how to obtain the best performance with these calculations in applications which could span hundreds of calculations and molecules. In this work, we compared two different treatments of long-range electrostatics, Particle Mesh Ewald (PME) and Reaction Field (RF), in relative binding free energy calculations using a non-equilibrium switching protocol. We found simulations using RF achieve comparable re- sults as those using PME but gain more efficiency when using CPU and similar performance using GPU. The results from this work encourage more use of RF in molecular simulations.</p></div></div></div>


2021 ◽  
Vol 154 (5) ◽  
pp. 054112
Author(s):  
Andrew C. Simmonett ◽  
Bernard R. Brooks
Keyword(s):  

2020 ◽  
Author(s):  
Yunhui Ge ◽  
David F. Hahn ◽  
David Mobley

<div><div><div><p>Relative free energy calculations are fast becoming a critical part of early stage pharmaceu- tical design, making it important to know how to obtain the best performance with these calculations in applications which could span hundreds of calculations and molecules. In this work, we compared two different treatments of long-range electrostatics, Particle Mesh Ewald (PME) and Reaction Field (RF), in relative binding free energy calculations using a non-equilibrium switching protocol. We found simulations using RF achieve comparable re- sults as those using PME but gain more efficiency when using CPU and similar performance using GPU. The results from this work encourage more use of RF in molecular simulations.</p></div></div></div>


2020 ◽  
Author(s):  
Yunhui Ge ◽  
David F. Hahn ◽  
David Mobley

<div><div><div><p>Relative free energy calculations are fast becoming a critical part of early stage pharmaceu- tical design, making it important to know how to obtain the best performance with these calculations in applications which could span hundreds of calculations and molecules. In this work, we compared two different treatments of long-range electrostatics, Particle Mesh Ewald (PME) and Reaction Field (RF), in relative binding free energy calculations using a non-equilibrium switching protocol. We found simulations using RF achieve comparable re- sults as those using PME but gain more efficiency when using CPU and similar performance using GPU. The results from this work encourage more use of RF in molecular simulations.</p></div></div></div>


2020 ◽  
Author(s):  
Lieyang Chen ◽  
Anthony Cruz ◽  
Daniel R. Roe ◽  
Andrew Simmonett ◽  
Lauren Wickstrom ◽  
...  

Grid Inhomogeneous Solvation Theory (GIST) maps out solvation thermodynamic properties on a fine meshed grid and provides a statistical mechanical formalism for thermodynamic end-state calculations. However, differences in how long-range non-bonded interactions are calculated in molecular dynamics engines and in the current implementation of GIST have prevented precise comparisons between free energies estimated using GIST and those from other free energy methods such as thermodynamic integration (TI). Here, we address this by presenting PME-GIST, a formalism by which particle mesh Ewald (PME) based electrostatic energies and long-range Lennard-Jones (LJ) energies are decomposed and assigned to individual atoms and the corresponding voxels they occupy in a manner consistent with the GIST approach. PME-GIST yields potential energy calculations that are precisely consistent with modern simulation engines and performs these calculations at a dramatically faster speed than prior implementations. Here, we apply PME-GIST end-states analyses to 32 small molecules whose solvation free energies are close to evenly distributed from 2 kcal/mol to -17 kcal/mol and obtain solvation energies consistent with TI calculations (R2 = 0.99, mean unsigned difference 0.8 kcal/mol). We also estimate the entropy contribution from the 2nd and higher order entropy terms that are truncated in GIST by the differences between entropies calculated in TI and GIST. With a simple correction for the high order entropy terms, PME-GIST obtains solvation free energies that are highly consistent with TI calculations (R2 = 0.99, mean unsigned difference = 0.4 kcal/mol) and experimental results (R2 = 0.88, mean unsigned difference = 1.4 kcal/mol). The precision of PME-GIST also enables us to show that the solvation free energy of small hydrophobic and hydrophilic molecules can be largely understood based on perturbations of the solvent in a region extending a few solvation shells from the solute. We have integrated PME-GIST into the open-source molecular dynamics analysis software CPPTRAJ.


2020 ◽  
Author(s):  
Lieyang Chen ◽  
Anthony Cruz ◽  
Daniel R. Roe ◽  
Andrew Simmonett ◽  
Lauren Wickstrom ◽  
...  

Grid Inhomogeneous Solvation Theory (GIST) maps out solvation thermodynamic properties on a fine meshed grid and provides a statistical mechanical formalism for thermodynamic end-state calculations. However, differences in how long-range non-bonded interactions are calculated in molecular dynamics engines and in the current implementation of GIST have prevented precise comparisons between free energies estimated using GIST and those from other free energy methods such as thermodynamic integration (TI). Here, we address this by presenting PME-GIST, a formalism by which particle mesh Ewald (PME) based electrostatic energies and long-range Lennard-Jones (LJ) energies are decomposed and assigned to individual atoms and the corresponding voxels they occupy in a manner consistent with the GIST approach. PME-GIST yields potential energy calculations that are precisely consistent with modern simulation engines and performs these calculations at a dramatically faster speed than prior implementations. Here, we apply PME-GIST end-states analyses to 32 small molecules whose solvation free energies are close to evenly distributed from 2 kcal/mol to -17 kcal/mol and obtain solvation energies consistent with TI calculations (R2 = 0.99, mean unsigned difference 0.8 kcal/mol). We also estimate the entropy contribution from the 2nd and higher order entropy terms that are truncated in GIST by the differences between entropies calculated in TI and GIST. With a simple correction for the high order entropy terms, PME-GIST obtains solvation free energies that are highly consistent with TI calculations (R2 = 0.99, mean unsigned difference = 0.4 kcal/mol) and experimental results (R2 = 0.88, mean unsigned difference = 1.4 kcal/mol). The precision of PME-GIST also enables us to show that the solvation free energy of small hydrophobic and hydrophilic molecules can be largely understood based on perturbations of the solvent in a region extending a few solvation shells from the solute. We have integrated PME-GIST into the open-source molecular dynamics analysis software CPPTRAJ.


Sign in / Sign up

Export Citation Format

Share Document