Keeping track of directions of atomic orbitals: A useful device in organic chemistry

1990 ◽  
Vol 67 (8) ◽  
pp. 655
Author(s):  
Erach R. Talaty
2019 ◽  
Author(s):  
Guy Lamoureux ◽  
J. F. Ogilvie

The importance of hybrid atomic orbitals, in both general and organic chemistry, is reviewed. Every contemporary textbook of organic chemistry introduces the sp3, sp2, sp model, but the suitability of these hybrid orbitals for use in the teaching of molecular structure has been increasingly questioned. Based on a critical survey of the literature, we submit seven practical criteria that deprecate the use of hybrid orbitals in a pedagogical context. We suggest how the teaching of organic chemistry without hybrid orbitals will provide students with an enhanced education.


2019 ◽  
Author(s):  
Guy Lamoureux ◽  
J. F. Ogilvie

The importance of hybrid atomic orbitals, in both general and organic chemistry, is reviewed. Every contemporary textbook of organic chemistry introduces the sp3, sp2, sp model, but the suitability of these hybrid orbitals for use in the teaching of molecular structure has been increasingly questioned. Based on a critical survey of the literature, we submit seven practical criteria that deprecate the use of hybrid orbitals in a pedagogical context. We suggest how the teaching of organic chemistry without hybrid orbitals will provide students with an enhanced education.


2019 ◽  
Author(s):  
Guy Lamoureux ◽  
J. F. Ogilvie

The importance of hybrid atomic orbitals, both historically and mathematically, is reviewed. Our new analysis of the original derivation of the sp3, sp2, sp model reveals serious errors. Based on a critical survey of the literature, we submit six formal criteria that deprecate the use of hybrid orbitals in a pedagogical context. A sound mathematical basis of sp3 and sp2 formulae does not exist; hybrid atomic orbitals have hence no legitimate role in the teaching of organic chemistry.


2019 ◽  
Author(s):  
Guy Lamoureux ◽  
J. F. Ogilvie

The importance of hybrid atomic orbitals, both historically and mathematically, is reviewed. Our new analysis of the original derivation of the sp3, sp2, sp model reveals serious errors. Based on a critical survey of the literature, we submit six formal criteria that deprecate the use of hybrid orbitals in a pedagogical context. A sound mathematical basis of sp3 and sp2 formulae does not exist; hybrid atomic orbitals have hence no legitimate role in the teaching of organic chemistry.


Author(s):  
Xudong Weng ◽  
O.F. Sankey ◽  
Peter Rez

Single electron band structure techniques have been applied successfully to the interpretation of the near edge structures of metals and other materials. Among various band theories, the linear combination of atomic orbital (LCAO) method is especially simple and interpretable. The commonly used empirical LCAO method is mainly an interpolation method, where the energies and wave functions of atomic orbitals are adjusted in order to fit experimental or more accurately determined electron states. To achieve better accuracy, the size of calculation has to be expanded, for example, to include excited states and more-distant-neighboring atoms. This tends to sacrifice the simplicity and interpretability of the method.In this paper. we adopt an ab initio scheme which incorporates the conceptual advantage of the LCAO method with the accuracy of ab initio pseudopotential calculations. The so called pscudo-atomic-orbitals (PAO's), computed from a free atom within the local-density approximation and the pseudopotential approximation, are used as the basis of expansion, replacing the usually very large set of plane waves in the conventional pseudopotential method. These PAO's however, do not consist of a rigorously complete set of orthonormal states.


Sign in / Sign up

Export Citation Format

Share Document