Transformation and Release of Potassium, Chlorine, and Sulfur from Wheat Straw under Conditions Relevant to Dual Fluidized Bed Gasification

2013 ◽  
Vol 27 (12) ◽  
pp. 7510-7520 ◽  
Author(s):  
Placid A. Tchoffor ◽  
Kent O. Davidsson ◽  
Henrik Thunman
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3935
Author(s):  
Juraj Priscak ◽  
Katharina Fürsatz ◽  
Matthias Kuba ◽  
Nils Skoglund ◽  
Florian Benedikt ◽  
...  

Thermal conversion of ash-rich fuels in fluidized bed systems is often associated with extensive operation problems caused by the high amount of reactive inorganics. This paper investigates the behavior of wheat straw lignin—a potential renewable fuel for dual fluidized bed gasification. The formation of coherent ash residues and its impact on the operation performance has been investigated and was supported by thermochemical equilibrium calculations in FactSage 7.3. The formation of those ash residues, and their subsequent accumulation on the surface of the fluidized bed, causes temperature and pressure fluctuations, which negatively influence the steady-state operation of the fluidized bed process. This paper presents a detailed characterization of the coherent ash residues, which consists mostly of silica and partially molten alkali silicates. Furthermore, the paper gives insights into the formation of these ash residues, dependent on the fuel pretreatment (pelletizing) of the wheat straw lignin, which increases their stability compared to the utilization of non-pelletized fuel.


Author(s):  
Cong-Binh Dinh ◽  
Shu-San Hsiau ◽  
Chien-Yuan Su ◽  
Meng-Yuan Tsai ◽  
Yi-Shun Chen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 189-203
Author(s):  
A. Lunzer ◽  
S. Kraft ◽  
S. Müller ◽  
H. Hofbauer

Author(s):  
Sébastien Pissot ◽  
Robin Faust ◽  
Panida Aonsamang ◽  
Teresa Berdugo Vilches ◽  
Jelena Maric ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Selina Hafner ◽  
Max Schmid ◽  
Günter Scheffknecht

Finding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer–Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water–gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.


2016 ◽  
Vol 152 ◽  
pp. 116-123 ◽  
Author(s):  
L.F. de Diego ◽  
F. García-Labiano ◽  
P. Gayán ◽  
A. Abad ◽  
T. Mendiara ◽  
...  

2015 ◽  
Vol 160 ◽  
pp. 489-501 ◽  
Author(s):  
Hui Liu ◽  
Robert J. Cattolica ◽  
Reinhard Seiser ◽  
Chang-hsien Liao

Sign in / Sign up

Export Citation Format

Share Document