Characterization of the Upper Ordovician and Lower Silurian Marine Shale in Northwestern Guizhou Province of the Upper Yangtze Block, South China: Implication for Shale Gas Potential

2014 ◽  
Vol 28 (6) ◽  
pp. 3679-3687 ◽  
Author(s):  
Yue Wu ◽  
Tailiang Fan ◽  
Jinchuan Zhang ◽  
Shu Jiang ◽  
Yifan Li ◽  
...  
2015 ◽  
Vol 29 (10) ◽  
pp. 6383-6393 ◽  
Author(s):  
Junpeng Zhang ◽  
Tailiang Fan ◽  
Jing Li ◽  
Jinchuan Zhang ◽  
Yifan Li ◽  
...  

Fuel ◽  
2014 ◽  
Vol 129 ◽  
pp. 204-218 ◽  
Author(s):  
Jingqiang Tan ◽  
Philipp Weniger ◽  
Bernhard Krooss ◽  
Alexej Merkel ◽  
Brian Horsfield ◽  
...  

2013 ◽  
Vol 27 (6) ◽  
pp. 2933-2941 ◽  
Author(s):  
Shuangbiao Han ◽  
Jinchuan Zhang ◽  
Yuxi Li ◽  
Brian Horsfield ◽  
Xuan Tang ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
Zhenxue Jiang ◽  
Chengzao Jia ◽  
...  

The study of tectonics is one of the important aspects of shale gas preservation. It is vital for understanding how to determine the enrichment regularity of marine shale gas in anticlines. This paper focuses on typical shale blocks in the southern Sichuan Basin and shale in the Upper Ordovician and the Lower Silurian. In this study, triaxial unloading tests, permeability tests perpendicular and parallel to the stratification plane, FIB-HIM tests, and inclusion analyses are carried out with real drilling data. The enrichment regularity of marine shale gas in anticlines is studied by considering 2 aspects: the angle of the limbs and the burial depth. For anticlines with adjacent synclines, the migration regularity of shale gas is considered by 3 aspects: the dynamics, channels, and processes of migration. This study reveals that a limb angle greater than 120° reflects relatively good conditions for shale gas preservation, while limb angles lesser than 70° indicate relatively poor conditions. This study also suggests that during the process of uplift, large-scale concentrated fractures will form at a certain depth range and horizontal stress field, resulting in the large loss of shale gas. The regression equation of the fractured depth (H) and the horizontal stress (S) is presented as H=15.404S−754.41 (with a correlation coefficient R2=0.6834). The stratification plane and the organic pores form the migration channel of natural gas that is horizontal to the stratification plane in shale. Under the condition of both anticlines and contiguous synclines, shale gas escapes through fractures resulting from extrusion along the anticline and the uplift effect. In addition, driven by differences in the formation pressure coefficients, shale gas is capable of migrating in a short-distance stair-type style from synclines to the adjacent anticlines. Thus, if the drilling costs allow, the well locations should be placed in the more deeply buried synclines.


Sign in / Sign up

Export Citation Format

Share Document