Influence of Culture Conditions on Metal-Induced Responses in a Cultured Rainbow Trout Gill Epithelium

2007 ◽  
Vol 41 (18) ◽  
pp. 6505-6513 ◽  
Author(s):  
Paul A. Walker ◽  
Nic R. Bury ◽  
Christer Hogstrand
2016 ◽  
Vol 53 ◽  
pp. 82-83 ◽  
Author(s):  
Goshi Kato ◽  
Haruya Miyazawa ◽  
Takuya Yamaguchi ◽  
Hidehiro Kondo ◽  
Motohiko Sano ◽  
...  

Heliyon ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. e08018
Author(s):  
Kafilat Adebola Bawa-Allah ◽  
Adebayo Otitoloju ◽  
Christer Hogstrand

2021 ◽  
Vol 9 (6) ◽  
pp. 1258
Author(s):  
Kerrie Ní Ní Dhufaigh ◽  
Natasha Botwright ◽  
Eugene Dillon ◽  
Ian O’Connor ◽  
Eugene MacCarthy ◽  
...  

Infection with the protozoan ectoparasite Neoparamoeba perurans, the causative agent of AGD, remains a global threat to salmonid farming. This study aimed to analyse the exoproteome of both an attenuated and virulent N. perurans isolate using proteomics and cytotoxicity testing. A disproportionate presence of proteins from the co-cultured microbiota of N. perurans was revealed on searching an amalgamated database of bacterial, N. perurans and Amoebozoa proteins. LC‑MS/MS identified 33 differentially expressed proteins, the majority of which were upregulated in the attenuated exoproteome. Proteins of putative interest found in both exoproteomes were maltoporin, ferrichrome-iron receptor, and putative ferric enterobactin receptor. Protease activity remained significantly elevated in the attenuated exoproteome compared with the virulent exoproteome. Similarly, the attenuated exoproteome had a significantly higher cytotoxic effect on rainbow trout gill cell line (RTgill W1) cells compared with the virulent exoproteome. The presence of a phosphatase and serine protease in the virulent exoproteome may facilitate AGD infection but do not appear to be key players in causing cytotoxicity. Altogether, this study reveals prolonged culture of N. perurans affects the exoproteome composition in favour of nutritional acquisition, and that the current culturing protocol for virulent N. perurans does not facilitate the secretion of virulence factors.


2000 ◽  
Vol 203 (10) ◽  
pp. 1523-1537 ◽  
Author(s):  
M. Fletcher ◽  
S.P. Kelly ◽  
P. Part ◽  
M.J. O'Donnell ◽  
C.M. Wood

A new double-seeded insert (DSI) technique is described for culture of branchial epithelial preparations from freshwater rainbow trout on filter supports. DSI epithelia contain both pavement cells and mitochondria-rich (MR) cells (15.7+/−2.5 % of total cell numbers). MR cells occur singly or in clusters, are voluminous, open apically to the ‘external environment’ and exhibit ultrastructural characteristics similar to those found in the ‘chloride cells’ of freshwater fish gills. After 6–9 days in culture with Leibovitz's L-15 medium on both surfaces (symmetrical conditions), transepithelial resistance (TER) stabilized at values as high as 34 k capomega cm(2), indicative of electrically ‘tight’ epithelia. The density of MR cells, the surface area of their clusters and transepithelial potential (TEP; up to +8 mV basolateral positive, mean +1.9+/−0.2 mV) were all positively correlated with TER. In contrast, preparations cultured using an earlier single-seeded insert (SSI) technique contained only pavement cells and exhibited a negligible TEP under symmetrical conditions. Na(+)/K(+)-ATPase activities of DSI preparations were comparable with those in gill filaments, but did not differ from those of SSI epithelia. Replacement of the apical medium with fresh water to mimic the in vivo situation (asymmetrical conditions) induced a negative TEP (−6 to −15 mV) and increased permeability to the paracellular marker PEG-4000. Under symmetrical conditions, unidirectional Na(+) and Cl(−) fluxes were in balance, and there was no active transport by the Ussing flux ratio criterion. Under asymmetrical conditions, there were large effluxes, small influxes and evidence for active Cl(−) uptake and Na(+) extrusion. Unidirectional Ca(2+) fluxes were only 0.5-1.0 % of Na(+) and Cl(−) fluxes; active net Ca(2+) uptake occurred under symmetrical conditions and active net extrusion under asymmetrical conditions. Thus, DSI epithelia exhibit some of the features of the intact gill, but improvements in culture conditions are needed before the MR cells will function as true freshwater ‘chloride cells’.


Sign in / Sign up

Export Citation Format

Share Document