in vitro method
Recently Published Documents


TOTAL DOCUMENTS

644
(FIVE YEARS 81)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yalda Mirzaei ◽  
Kerstin Hagemeister ◽  
Martina Hüffel ◽  
Timo Schwandt ◽  
René H. Tolba ◽  
...  

Background. Tissue glues can minimize treatment invasiveness, mitigate the risk of infection, and reduce surgery time; ergo, they have been developed and used in surgical procedures as wound closure devices beside sutures, staples, and metallic grafts. Regardless of their structure or function, tissue glues should show an acceptable microbial barrier function before being used in humans. This study proposes a novel in vitro method using Escherichia coli Lux and bioluminescence imaging technique to assess the microbial barrier function of tissue glues. Different volumes and concentrations of E. coli Lux were applied to precured or cured polyurethane-based tissue glue placed on agar plates. Plates were cultured for 1 h, 24 h, 48 h, and 72 h with bioluminescence signal measurement subsequently. Herein, protocol established a volume of 5 μL of a 1 : 100 dilution of E. coli Lux containing around 2 × 10 7  CFU/mL as optimal for testing polyurethane-based tissue glue. Measurement of OD600nm, determination of CFU/mL, and correlation with the bioluminescence measurement in p/s unit resulted in a good correlation between CFU/mL and p/s and demonstrated good reproducibility of our method. In addition, this in vitro method could show that the tested polyurethane-based tissue glue can provide a reasonable barrier against the microbial penetration and act as a bacterial barrier for up to 48 h with no penetration and up to 72 h with a low level of penetration through the material. Overall, we have established a novel, sensitive, and reproducible in vitro method using the bioluminescence imaging technique for testing the microbial barrier function of new tissue glues.


2022 ◽  
Vol 42 ◽  
pp. 01014
Author(s):  
E. V. Sheida ◽  
S. A. Miroshnikov ◽  
G. K. Duskaev ◽  
K.N. Atlanderova ◽  
V.V. Grechkina

The paper studies the effect of additional administration of ultrafine particles on the cattle rumen microbiome composition. The in vitro method was used using the ANKOM Daisy II incubator according to a specialized method. Microflora analysis was performed using MiSeq (Illumina, USA) by a new generation sequencing method with a MiSeq reagent kit. After a detailed analysis of the structure and composition of the microbial community in the contents of the rumen sampled for different diets, it was found that no significant differences were observed in the bacterial communities, with the exception of a slight shift in the Bacteroidetes/Firmicutes ratio. However, we observed numerical differences in the abundance of some representatives, namely, with additional inclusion of Fe and Cr2O3, decrease in the abundance of the methane-forming species Methanobrevibacter, Methanobacterium, Methanosphaera, and Methnaomicrobium was noted regarding the control.


2021 ◽  
Author(s):  
Anna Bilska-Wilkosz

It is commonly known that aldehyde dehydrogenases (ALDHs) are a promising therapeutic target in many diseases. Bui et al. - the authors of the paper I am discussing here (Biosci Rep (2021) 41(5): BSR20210491; DOI: https://doi.org/10.1042/BSR20210491) - point that there is a lack of research on the use of spices and herbs as the sources of naturally occurring modulators of ALDH activity. In order to carry out this type of research, the authors prepared ethanolic extracts of 22 spices and herbs. The main objective of the study was to investigate retinaldehyde dehydrogenases (RALDHs), of which retinal is the main substrate and ALDH2, the mitochondrial isoform, having acetaldehyde as the main substrate. The obtained results indicated that the tested extracts exhibited differential regulatory effects on RALDHs/ALDH2 and some of them showed a potential selective inhibition of the activity of RALDHs.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7280
Author(s):  
Mayumi Maesako ◽  
Takafumi Kishimoto ◽  
Shigetaka Tomoda ◽  
Taku Horie ◽  
Mitsuyoshi Yamada ◽  
...  

Resin composites employing structural coloration have recently been developed. These resins match to various tooth shades despite being a single paste. To accomplish this, the filler and base resin are tightly bonded, which is thought to provide excellent discoloration resistance. Here, we investigated the surface properties of one of these resins, including the discoloration of the repolished surface. We developed an innovative in vitro method to adjust the repolished surface, in which structural degradation is removed according to scanning electron microscopy (SEM) observation rather than by the naked eye. The resin samples (20 mm (length) × 10 mm (width) × 4 mm (depth)) were manufactured using this resin material. After accelerated aging of the resin by alkaline degradation, the resin was repolished and the discoloration (ΔE*ab), surface roughness (the arithmetic mean roughness (Ra)), and glossiness (the 60° specular) were measured. SEM observation showed that the appearance of the bond between the organic composite filler and base resin on the repolished surface was different from that on the mirror-polished surface. This revealed that according to our in vitro method it was difficult to make the repolished surface structurally identical to the mirror-polished surface. Among the properties of the repolished surface, the degree of discoloration did not change despite the rougher and less glossy surface. It can be concluded that the factors that induce discoloration in this resin composite are independent of the surface roughness and glossiness.


2021 ◽  
Vol 17 (5) ◽  
pp. 495-503
Author(s):  
Shamsiah Abdullah ◽  
Siti Nurain Roslan

One of the challenges related to propagation of Arenga pinnata is its lengthy period of seed dormancy. In this study, in vitro regeneration was carried out to determine the effect of hormonal treatment on the embryo explant of Arenga pinnata. Embryos were surface sterilized and cultured into different media supplemented with various hormones concentrations and combinations. Each treatment contained of Kinetin (KN) hormone (1.0, 2.0, and 3.0 mg/l) and in combination with indole-3-acetic acid (IAA) of 0.1, 0.2, 0.3 mg/l. The height of plumule and length of radical was observed and recorded. Treatment 8 (3 mg/ml KN + 0.1 mg/ml IAA) showed 59.09% in plumule height increment while treatment 4 (1 mg/ml KN + 0.3 mg/ml IAA) showed the highest radical increments with 93.62%. The knowledge gained in this study consequently helps us to better understand the role of KN and IAA in the in vitro regeneration protocol. Since in vitro method able to produce higher number of in vitro seedlings at one time, it is important to establish the in vitro regeneration protocol for this plant.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2853
Author(s):  
Khaterine C. Salazar-Cubillas ◽  
Uta Dickhoefer

The objectives of the present study were (1) to assess the adequacy of the in vitro and chemical methods to predict post-ruminal crude protein supply (PRCP) from fresh tropical forage, and (2) to identify PRCP supply predictors. Twenty-three fresh forage grasses and 15 forage legumes commonly used in domestic cattle feeding in the tropics and subtropics were incubated in the rumen of cows to determine ruminal crude protein (CP) degradation. The PRCP supply was calculated from in situ rumen-undegraded CP and in vitro organic matter digestibility (i.e., reference method), from ammonia-nitrogen release during in vitro incubation (i.e., in vitro method), and from the concentrations of chemical CP fractions (i.e., chemical method). The adequacy was evaluated using error-index and dimensionless parameters, and stepwise regression was used to select PRCP predictors. Adequacy ranged from poor to moderate (0.53 to 0.74) for the in vitro method being lower for forage legumes at a slow rumen passage rate (0.20), and even poorer (0.02 to 0.13) for the chemical method. Hence, the in vitro method can estimate PRCP supply in tropical forages with moderate to high but not with slow passage rates. Equations developed in the present study appear to predict PRCP supply with reasonable adequacy.


2021 ◽  
Vol 350 ◽  
pp. S105-S106
Author(s):  
A. Weber ◽  
B. Birk ◽  
C. Mueller ◽  
H.-A. Huener ◽  
K. Renko ◽  
...  

Heliyon ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. e08018
Author(s):  
Kafilat Adebola Bawa-Allah ◽  
Adebayo Otitoloju ◽  
Christer Hogstrand

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1849
Author(s):  
Mansor Hamed ◽  
David G. Holm ◽  
Michael Bartolo ◽  
Pinky Raigond ◽  
Vidyasagar Sathuvalli ◽  
...  

An in vitro method was used to assess the bioaccessibility of phenolics, flavonoids, carotenoids, and capsaicinoid compounds in different cooked potatoes mixed with roasted peppers (Capsicum annuum), Joe Parker (JP, hot), and Sweet Delilah (SD, sweet). The present study identified differences in the bioaccessibility of bioactive compounds among the potato cultivars (Solanum tuberosum) Purple Majesty (PM; purple flesh), Yukon Gold (YG; yellow flesh), Rio Grande Russet (RG; white flesh) and a numbered selection (CO 97226-2R/R (R/R; red flesh)). The bioactive compounds and capsaicinoid compounds in potatoes and peppers were estimated before and after in vitro digestion. Before digestion, the total phenolic content of potato cultivars mixed with JP was in the following order: R/R > PM > YG > RG. The highest levels of carotenoids were 194.34 µg/g in YG and 42.92 µg/g in the RG cultivar when mixed with roasted JP. The results indicate that the amount of bioaccessible phenolics ranged from 485 to 252 µg/g in potato cultivars mixed with roasted JP. The bioaccessibility of flavonoids ranged from 185.1 to 59.25 µg/g. The results indicate that the YG cultivar mixed with JP and SD showed the highest phenolic and carotenoid bioaccessibility. In contrast, the PM mixed with JP and SD contained the lowest phenolic and carotenoid bioaccessibility. Our results indicate that the highest flavonoid bioaccessibility occurred in R/R mixed with roasted JP and SD. The lowest flavonoids bioaccessibility occurred in PM and the RG. The maximum bioaccessible amount of capsaicin was observed in YG mixed with JP, while the minimum bioaccessibility was observed with PM.


Sign in / Sign up

Export Citation Format

Share Document