Biogenic Phosphorus Compounds in Sediment and Suspended Particles in a Shallow Eutrophic Lake: A31P-Nuclear Magnetic Resonance (31P NMR) Study

2012 ◽  
Vol 46 (19) ◽  
pp. 10572-10578 ◽  
Author(s):  
Ryuichiro Shinohara ◽  
Akio Imai ◽  
Nobuyuki Kawasaki ◽  
Kazuhiro Komatsu ◽  
Ayato Kohzu ◽  
...  
1991 ◽  
Vol 70 (5) ◽  
pp. 1963-1976 ◽  
Author(s):  
G. O. Matheson ◽  
P. S. Allen ◽  
D. C. Ellinger ◽  
C. C. Hanstock ◽  
D. Gheorghiu ◽  
...  

Two metabolic features of altitude-adapted humans are the maximal O2 consumption (VO2max) paradox (higher work rates following acclimatization without increases in VO2max) and the lactate paradox (progressive reductions in muscle and blood lactate with exercise at increasing altitude). To assess underlying mechanisms, we studied six Andean Quechua Indians in La Raya, Peru (4,200 m) and at low altitude (less than 700 m) immediately upon arrival in Canada. The experimental strategy compared whole-body performance tests and single (calf) muscle work capacities in the Andeans with those in groups of sedentary, power-trained, and endurance-trained lowlanders. We used 31P nuclear magnetic resonance spectroscopy to monitor noninvasively changes in concentrations of phosphocreatine [( PCr]), [Pi], [ATP], [PCr]/[PCr] + creatine ([Cr]), [Pi]/[PCr] + [Cr], and pH in the gastrocnemius muscle of subjects exercising to fatigue. Our results indicate that the Andeans 1) are phenotypically unique with respect to measures of anaerobic and aerobic work capacity, 2) despite significantly lower anaerobic capacities, are capable of calf muscle work rates equal to those of highly trained power- and endurance-trained athletes, and 3) compared with endurance-trained athletes with significantly higher VO2max values and power-trained athletes with similar VO2max values, display, respectively, similar and reduced perturbation of all parameters related to the phosphorylation potential and to measurements of [Pi], [PCr], [ATP], and muscle pH derivable from nuclear magnetic resonance. Because the lactate paradox may be explained on the basis of tighter ATP demand-supplying coupling, we postulate that a similar mechanism may explain 1) the high calf muscle work capacities in the Andeans relative to measures of whole-body work capacity, 2) the VO2max paradox, and 3) anecdotal reports of exceptional work capacities in indigenous altitude natives.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 331 ◽  
Author(s):  
Marcin Kudzin ◽  
Renata Żyłła ◽  
Zdzisława Mrozińska ◽  
Paweł Urbaniak

The reactions of (N-(PhosphonoMethyl)Glycine) PMG with H2O2 in homogenous systems were investigated using 31P NMR (Nuclear Magnetic Resonance). These reactions were carried out in two reaction modes: without UV radiation and under UV radiation. The reactions of PMG with H2O2 without UV radiation were carried out in two modes: the degradations of PMG (0.1 mmol) by means of 5–10 molar excess of hydrogen dioxide (PMG-H2O2 = 1:5 and 1:10) and the degradation of PMG (0.1 mmol) in homogenous Fenton reactions (PMG-H2O2-Fe2+ = 1:10:0.05 and 1:10:0.1). All reactions were carried out at ambient temperature, at pH 3.5, for 48 h. The reactions of PMG (in Roundup herbicide composition, 12 mmol) with H2O2 under UV radiation (254 nm) were carried out using 5 × molar excess of H2O2 (60 mmol), in the pH range of 2 ≤ pH ≤ 12, for 6 h. In this mode of PMG oxidation, the splitting of C-P was observed in the ratios dependent on the applied pH of the reaction mixture.


Sign in / Sign up

Export Citation Format

Share Document