Biogeochemical Processes Governing Natural Pyrite Oxidation and Release of Acid Metalliferous Drainage

2014 ◽  
Vol 48 (10) ◽  
pp. 5537-5545 ◽  
Author(s):  
Ya-ting Chen ◽  
Jin-tian Li ◽  
Lin-xing Chen ◽  
Zheng-shuang Hua ◽  
Li-nan Huang ◽  
...  
2016 ◽  
Vol 13 (17) ◽  
pp. 4945-4957 ◽  
Author(s):  
Rémon Saaltink ◽  
Stefan C. Dekker ◽  
Jasper Griffioen ◽  
Martin J. Wassen

Abstract. Interest is growing in using soft sediment as a foundation in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here, dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon begin. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant–soil feedbacks, we conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N : P ratios of the plant tissue were low, and these were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose the use of Fe-tolerant species rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the situated sediment and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.


2009 ◽  
Vol 71-73 ◽  
pp. 37-41 ◽  
Author(s):  
Axel Schippers ◽  
Dagmar Kock

The geomicrobiology of sulfidic mine dumps is reviewed. More than 30 microbiological studies of sulfidic mine dumps have been published. Mainly culturing approaches such as most probable number (MPN) or agar plates were used to study the microbial communities. More recently, molecular biological techniques such as FISH, CARD-FISH, Q-PCR, T-RFLP, DGGE, or cloning have been applied to quantify microorganisms and to investigate the microbial diversity. Aerobic Fe(II)- and sulfur compound oxidizing microorganisms oxidize pyrite, pyrrhotite and other metal sulfides and play an important role in the formation of acid mine drainage (AMD). Anaerobic microorganisms such as Fe(III)-reducing microorganisms dissolve Fe(III)(hydr)oxides and may thereby release adsorbed or precipitated metals. Sulfate-reducing microorganisms precipitate and immobilize metals. In addition to the microbial communities several biogeochemical processes have been analyzed in mine dumps. Pyrite or pyrrhotite oxidation rates have been measured by different techniques: Column experiments, humidity cells, microcalorimetry, or oxygen consumption measurements. Analyses of stable isotopes of iron, oxygen and sulfur have yielded valuable information on biogeochemical reactions. The microbiology and the biogeochemical processes in sulfidic mine dumps have to be understood for control and prevention of AMD generation and to provide different possibilities for remediation concepts. Today, remediation measures, e.g. under water storage of the waste or covering of the dumps, focus on the inhibition of pyrite oxidation to keep the toxic compounds inside the mine waste dumps. As an alternative to the inhibition of pyrite oxidation, metals which also have economic value could be extracted from mine dumps by the application of different metal extraction technologies including bioleaching.


2016 ◽  
Author(s):  
Rémon Saaltink ◽  
Stefan C. Dekker ◽  
Jasper Griffioen ◽  
Martin J. Wassen

Abstract. Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant–soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.


Tellus B ◽  
2008 ◽  
Vol 60 (5) ◽  
Author(s):  
C. Rödenbeck ◽  
C. Le Quéré ◽  
M. Heimann ◽  
R. F. Keeling

Sign in / Sign up

Export Citation Format

Share Document