Bidentate linkage isomerization and phosphate hydrolysis in (triphosphato)tetraamminecobalt(III)

1984 ◽  
Vol 23 (11) ◽  
pp. 1563-1565 ◽  
Author(s):  
Joseph Reibenspies ◽  
Richard D. Cornelius
2009 ◽  
Vol 113 (12) ◽  
pp. 2666-2676 ◽  
Author(s):  
Tung T. To ◽  
Edwin J. Heilweil ◽  
Charles B. Duke ◽  
Kristie R. Ruddick ◽  
Charles Edwin Webster ◽  
...  

Parasitology ◽  
1973 ◽  
Vol 67 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Madan M. Goil

Biochemical studies on the non-specific phosphomonoesterases have demonstrated the presence of acid phosphomonoesterase with maximum activity at pH 4·0 in Gastrodiscus aegyptiacus (enzyme I) and at pH 4·5 in the case of Fasdolopsis buski (enzyme II). The Km for ρ-nitrophenyl phosphate hydrolysis was 0·66 mM for enzyme I and 1·1 mM for enzyme II. Different concentrations of fluoride, arsenate, tartrate, tartaric acid, cysteine and copper brought about inhibition of both enzymes and magnesium, iodoaeetate, iodoacetamide and EDTA had no influence on either enzyme activity. Cobalt activated both enzymes while zinc inhibited enzyme I and strongly stimulated enzyme II.


Author(s):  
Ana Rita Calixto ◽  
Cátia Moreira ◽  
Caroline Lynn Kamerlin

1995 ◽  
Vol 310 (1) ◽  
pp. 221-224 ◽  
Author(s):  
J F St-Denis ◽  
B Annabi ◽  
H Khoury ◽  
G van de Werve

The effect of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase activities was investigated in relation to microsomal membrane permeability. It was found that glucose-6-phosphatase activity in histone II-A-pretreated liver microsomes was stimulated to the same extent as in detergent-permeabilized microsomes, and that the substrate specificity of the enzyme for glucose 6-phosphate was lost in histone II-A-pretreated microsomes, as [U-14C]glucose-6-phosphate hydrolysis was inhibited by mannose 6-phosphate and [U-14C]mannose 6-phosphate hydrolysis was increased. The accumulation of [U-14C]glucose from [U-14C]glucose 6-phosphate into untreated microsomes was completely abolished in detergent-treated vesicles, but was increased in histone II-A-treated microsomes, accounting for the increased glucose-6-phosphatase activity, and demonstrating that the microsomal membrane was still intact. The stimulation of glucose-6-phosphatase and mannose-6-phosphatase activities by histone II-A was found to be reversed by EGTA. It is concluded that the effects of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase are not caused by the permeabilization of the microsomal membrane. The measurement of mannose-6-phosphatase latency to evaluate the intactness of the vesicles is therefore inappropriate.


Sign in / Sign up

Export Citation Format

Share Document