acid phosphomonoesterase
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 4)

H-INDEX

18
(FIVE YEARS 2)

2019 ◽  
Vol 1 (34) ◽  
pp. 9-15
Author(s):  
Anna Siczek ◽  
Jerzy Wielbo ◽  
Jerzy Lipiec ◽  
Stanisław Kalembasa ◽  
Dorota Kalembasa ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 734 ◽  
Author(s):  
Huixia Tian ◽  
Xiaoqin Cheng ◽  
Hairong Han

Soil phosphorus (P) is one of the essential macronutrients for plant growth. Phosphatase-mediated P mineralization in particular is critical for the biogeochemical cycling of P, and its activity reflects the organic P (Po) mineralization potential in soils. In recent years, global climate change has led to changes in precipitation, which inevitably has affected the P cycle as well. To study these effects of precipitation on soil acid phosphomonoesterase (AcPME) activity, the following combined thinning and precipitation treatments were conducted across Larix principis-rupprechtii Mayr. plantations in China: control (CK), light (LT), moderate (MT), and high thinning (HT). The precipitation treatments included natural precipitation (NP), 30% reduced precipitation (RP30), and 60% reduced precipitation (RP60). Soil moisture, microbial biomass carbon (MBC), and soil P fractions were also determined to link their effects on soil AcPME. The results show that soil AcPME activity was significantly higher in the rainy season, which is associated with higher microbial activity and increased P demand, than in the dry season. Generally, soil AcPME activity was found to increase with thinning intensity. In the dry season, the NP treatment was more conducive to improving soil AcPME activity. In the rainy season, the RP60 treatment inhibited soil AcPME activity under all thinning treatments. The RP30 treatment was only found to offer a significant boost for MT. These results indicate that the potential transformation rate of Po may be more dependent on water in the dry season than in the rainy season. If drought occurs, the Po mineralization rate would decrease for all L. principis-rupprechtii plantations, but excessive rainfall in the rainy season would also impact the turnover of Po into MT adversely.


2018 ◽  
Vol 15 ◽  
pp. e00193 ◽  
Author(s):  
M.N. Kiboi ◽  
K.F. Ngetich ◽  
D.N. Mugendi ◽  
A. Muriuki ◽  
N. Adamtey ◽  
...  

2017 ◽  
Vol 14 (8) ◽  
pp. 2155-2166 ◽  
Author(s):  
Ruzhen Wang ◽  
Linyou Lü ◽  
Courtney A. Creamer ◽  
Feike A. Dijkstra ◽  
Heyong Liu ◽  
...  

Abstract. Soil coarseness decreases ecosystem productivity, ecosystem carbon (C) and nitrogen (N) stocks, and soil nutrient contents in sandy grasslands subjected to desertification. To gain insight into changes in soil C and N pools, microbial biomass, and enzyme activities in response to soil coarseness, a field experiment was conducted by mixing native soil with river sand in different mass proportions: 0, 10, 30, 50, and 70 % sand addition. Four years after establishing plots and 2 years after transplanting, soil organic C and total N concentrations decreased with increased soil coarseness down to 32.2 and 53.7 % of concentrations in control plots, respectively. Soil microbial biomass C (MBC) and N (MBN) declined with soil coarseness down to 44.1 and 51.9 %, respectively, while microbial biomass phosphorus (MBP) increased by as much as 73.9 %. Soil coarseness significantly decreased the enzyme activities of β-glucosidase, N-acetyl-glucosaminidase, and acid phosphomonoesterase by 20.2–57.5 %, 24.5–53.0 %, and 22.2–88.7 %, used for C, N and P cycling, respectively. However, observed values of soil organic C, dissolved organic C, total dissolved N, available P, MBC, MBN, and MBP were often significantly higher than would be predicted from dilution effects caused by the sand addition. Soil coarseness enhanced microbial C and N limitation relative to P, as indicated by the ratios of β-glucosidase and N-acetyl-glucosaminidase to acid phosphomonoesterase (and MBC : MBP and MBN : MBP ratios). Enhanced microbial recycling of P might alleviate plant P limitation in nutrient-poor grassland ecosystems that are affected by soil coarseness. Soil coarseness is a critical parameter affecting soil C and N storage and increases in soil coarseness can enhance microbial C and N limitation relative to P, potentially posing a threat to plant productivity in sandy grasslands suffering from desertification.


2016 ◽  
Author(s):  
Ruzhen Wang ◽  
Linyou Lü ◽  
Courtney A. Creamer ◽  
Heyong Liu ◽  
Xue Feng ◽  
...  

Abstract. Soil coarseness decreases ecosystem productivity, ecosystem carbon and nitrogen stocks, and soil nutrient contents in sandy grasslands. To gain insight into changes in soil carbon and nitrogen pools, microbial biomass, and enzyme activities in response to soil coarseness, a field experiment of sand addition was conducted to coarsen soil with different intensities: 0 % sand addition, 10 %, 30 %, 50 %, and 70 %. Soil organic carbon and total nitrogen decreased with the intensification of soil coarseness across three depths (0–10 cm, 10–20 cm, and 20–40 cm) by up to 43.9 % and 53.7 %, respectively. At 0–10 cm, soil microbial biomass carbon (MBC) and nitrogen (MBN) declined with soil coarseness by up to 44.1 % and 51.9 %, respectively, while microbial biomass phosphorus (MBP) increased by as much as 73.9 %. Soil coarseness significantly decreased the activities of β-glucosidase, N-acetyl-glucosaminidase, and acid phosphomonoesterase by 20.2 %–57.5 %, 24.5 %–53.0 %, and 22.2 %–88.7 %, respectively. Soil coarseness enhanced microbial C and N limitation relative to P, indicated by the ratios of β-glucosidase and N-acetyl-glucosaminidase to acid phosphomonoesterase (and MBC:MBP and MBN:MBP ratios). As compared to laboratory measurement, values of soil parameters from theoretical sand dilution was significantly lower for soil organic carbon, total nitrogen, dissolved organic carbon, total dissolved nitrogen, available phosphorus, MBC, MBN, and MBP. Phosphorus immobilization in microbial biomass might aggravate plant P limitation in nutrient-poor grassland ecosystems as affected by soil coarseness. We conclude that microbial C:N:P and enzyme activities might be good indicators for nutrient limitation of microorganisms and plants.


Pedosphere ◽  
2012 ◽  
Vol 22 (5) ◽  
pp. 698-706 ◽  
Author(s):  
Wen-Juan HUANG ◽  
De-Qiang ZHANG ◽  
Yue-Lin LI ◽  
Xian-Kai LU ◽  
Wei ZHANG ◽  
...  

2012 ◽  
Vol 175 (2) ◽  
pp. 196-211 ◽  
Author(s):  
Klement Rejsek ◽  
Valerie Vranova ◽  
Marian Pavelka ◽  
Pavel Formanek

Sign in / Sign up

Export Citation Format

Share Document