nitrophenyl phosphate
Recently Published Documents


TOTAL DOCUMENTS

520
(FIVE YEARS 31)

H-INDEX

48
(FIVE YEARS 3)

2021 ◽  
Vol 22 (24) ◽  
pp. 13625
Author(s):  
Vladislav E. Sobolev ◽  
Margarita O. Sokolova ◽  
Richard O. Jenkins ◽  
Nikolay V. Goncharov

The delayed effects of acute intoxication by organophosphates (OPs) are poorly understood, and the various experimental animal models often do not take into account species characteristics. The principal biochemical feature of rodents is the presence of carboxylesterase in blood plasma, which is a target for OPs and can greatly distort their specific effects. The present study was designed to investigate the nephrotoxic effects of paraoxon (O,O-diethyl O-(4-nitrophenyl) phosphate, POX) using three models of acute poisoning in outbred Wistar rats. In the first model (M1, POX2x group), POX was administered twice at doses 110 µg/kg and 130 µg/kg subcutaneously, with an interval of 1 h. In the second model (M2, CBPOX group), 1 h prior to POX poisoning at a dose of 130 µg/kg subcutaneously, carboxylesterase activity was pre-inhibited by administration of specific inhibitor cresylbenzodioxaphosphorin oxide (CBDP, 3.3 mg/kg intraperitoneally). In the third model (M3), POX was administered subcutaneously just once at doses of LD16 (241 µg/kg), LD50 (250 µg/kg), and LD84 (259 µg/kg). Animal observation and sampling were performed 1, 3, and 7 days after the exposure. Endogenous creatinine clearance (ECC) decreased in 24 h in the POX2x group (p = 0.011). Glucosuria was observed in rats 24 h after exposure to POX in both M1 and M2 models. After 3 days, an increase in urinary excretion of chondroitin sulfate (CS, p = 0.024) and calbindin (p = 0.006) was observed in rats of the CBPOX group. Morphometric analysis revealed a number of differences most significant for rats in the CBPOX group. Furthermore, there was an increase in the area of the renal corpuscles (p = 0.0006), an increase in the diameter of the lumen of the proximal convoluted tubules (PCT, p = 0.0006), and narrowing of the diameter of the distal tubules (p = 0.001). After 7 days, the diameter of the PCT lumen was still increased in the nephrons of the CBPOX group (p = 0.0009). In the M3 model, histopathological and ultrastructural changes in the kidneys were revealed after the exposure to POX at doses of LD50 and LD84. Over a period from 24 h to 3 days, a significant (p = 0.018) expansion of Bowman’s capsule was observed in the kidneys of rats of both the LD50 and LD84 groups. In the epithelium of the proximal tubules, stretching of the basal labyrinth, pycnotic nuclei, and desquamation of microvilli on the apical surface were revealed. In the epithelium of the distal tubules, partial swelling and destruction of mitochondria and pycnotic nuclei was observed, and nuclei were displaced towards the apical surface of cells. After 7 days of the exposure to POX, an increase in the thickness of the glomerular basement membrane (GBM) was observed in the LD50 and LD84 groups (p = 0.019 and 0.026, respectively). Moreover, signs of damage to tubular epithelial cells persisted with blockage of the tubule lumen by cellular detritus and local destruction of the surface of apical cells. Comparison of results from the three models demonstrates that the nephrotoxic effects of POX, evaluated at 1 and 3 days, appear regardless of prior inhibition of carboxylesterase activity.


2021 ◽  
Vol 11 (1) ◽  
pp. 105-110
Author(s):  
Dung Le Van ◽  
Phuong Dang Tuyet ◽  
Trinh Nguyen Duy ◽  
Manh Nguyen Ba

TiO2 and ZrO2 nanomaterials were successfully synthesized by sol gel method. Samples were characterized by X-ray difraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption–desorption, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS),  SEM images and TEM images of TiO2 and ZrO2 samples showed the particle size of 10–20 nm. The results have revealed highly porous structure of ZrO2 and TiO2 nanomaterials with specific surface area of 116 m2g-1 and 125 m2g-1, respectively. The TiO2 and ZrO2 materials were used as the degradation of dimethyl 4-nitrophenyl phosphate (DMNP) chemical warfare agent emulator. The ZrO2 nanomaterial exhibited highly catalytic performance of DMNP degradation and the conversion reached to the value of 90.64 %, after 120 min of reaction.


2021 ◽  
Author(s):  
Daniel Njau ◽  
Accadius Lunayo ◽  
Johansen Odour

Abstract BackgroundIn forensic investigation of alleged sexual crimes, presumptive semen detection test methods are commonly used to reach preliminary identification of seminal fluid in questioned samples. These methods are based on the detection of components of semen such as enzyme acid phosphatase (AP). Of these methods, the acid phosphatase identification method still remains the most reliable and widely used presumptive test due to high activity of the AP in seminal fluid. In standard AP test, Bretamine Fast Blue B (FBB) reagent is used. However FBB has been explicitly classified as carcinogenic. Although FBB has been handled safely over time, there is a need at the moment to develop a simple, readily available, reliable and efficient method for screening the presence of semen in any material collected as evidence in a sexual assault crime.Given the improved sensitivity of DNA profiling tests that have been introduced in to routine forensic casework over recent years, the need for improved sensitivity at this first stage of detection has never been higher. FindingsHere we highlight a simple method using readily available reagents in standard biochemical laboratory as a substitute for the standard AP test for seminal fluid identification from a crime scene. This method is based on the hydrolysis of sodium–p-nitrophenyl phosphate at pH 5.5 by the acid phosphatase to produce an intense yellow coloured complex in 15 seconds. ConclusionsThe method presented is sensitive, reliable, efficient and routinely used in standard biochemical and pathology laboratories for spectrophotometric analysis of alkaline phosphatase. It can be easily and readily applied as a preliminary test for identification of semen at a crime scene that involves sexual assault.


2021 ◽  
Vol 414 ◽  
pp. 128822
Author(s):  
Jiří Henych ◽  
Martin Šťastný ◽  
Zuzana Němečková ◽  
Karel Mazanec ◽  
Jakub Tolasz ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiongqiong Zhou ◽  
Bingfang Yan ◽  
Wanying Sun ◽  
Qi Chen ◽  
Qiling Xiao ◽  
...  

Endocannabinoids are endogenous ligands of cannabinoid receptors and activation of these receptors has strong physiological and pathological significance. Structurally, endocannabinoids are esters (e.g., 2-arachidonoylglycerol, 2-AG) or amides (e.g., N-arachidonoylethanolamine, AEA). Hydrolysis of these compounds yields arachidonic acid (AA), a major precursor of proinflammatory mediators such as prostaglandin E2. Carboxylesterases are known to hydrolyze esters and amides with high efficiency. CES1, a human carboxylesterase, has been shown to hydrolyze 2-AG, and shares a high sequence identity with pig carboxylesterases: PLE1 and PLE6 (pig liver esterase). The present study was designed to test the hypothesis that PLE1 and PLE6 hydrolyze endocannabinoids and promote inflammatory response. Consistent with the hypothesis, purified PLE1 and PLE6 efficaciously hydrolyzed 2-AG and AEA. PLE6 was 40-fold and 3-fold as active as PLE1 towards 2-AG and AEA, respectively. In addition, both PLE1 and PLE6 were highly sensitive to bis(4-nitrophenyl) phosphate (BNPP), an aryl phosphodiester known to predominately inhibit carboxylesterases. Based on the study with BNPP, PLEs contributed to the hydrolysis of 2-AG by 53.4 to 88.4% among various organs and cells. Critically, exogenous addition or transfection of PLE6 increased the expression and secretion of proinflammatory cytokines in response to the immunostimulant lipopolysaccharide (LPS). This increase was recapitulated in cocultured alveolar macrophages and PLE6 transfected cells in transwells. Finally, BNPP reduced inflammation trigged by LPS accompanied by reduced formation of AA and proinflammatory mediators. These findings define an innovative connection: PLE-endocannabinoid-inflammation. This mechanistic connection signifies critical roles of carboxylesterases in pathophysiological processes related to the metabolism of endocannabinoids.


Inorganics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 12
Author(s):  
Sebastian Doniz Kettenmann ◽  
Yvonne Nossol ◽  
Febee R. Louka ◽  
Julia R. Legrande ◽  
Elise Marine ◽  
...  

Five-coordinate Cu(II) complexes, [Cu(Ln)X]ClO4/PF6, where Ln = piperazine ligands bearing two pyridyl arms and X = ClO4− for Ln = L1 (1-ClO4), L2 (2-ClO4), L3 (3-ClO4), and L6 (6-ClO4) as well as [Cu(Ln)Cl]PF6 for Ln = L1 (1-Cl), L4 (4-Cl), and L5 (5-Cl) have been synthesized and characterized by spectroscopic techniques. The molecular structures of the last two complexes were determined by X-ray crystallography. In aqueous acetonitrile solutions, molar conductivity measurements and UV-VIS spectrophotometric titrations of the complexes revealed the hydrolysis of the complexes to [Cu(Ln)(H2O)]2+ species. The biological activity of the Cu(II) complexes with respect to DNA cleavage and cytotoxicity was investigated. At micromolar concentration within 2 h and pH 7.4, DNA cleavage rate decreased in the order: 1-Cl ≈ 1-ClO4 > 3-ClO4 ≥ 2-ClO4 with cleavage enhancements of up to 23 million. Complexes 4-Cl, 5-Cl, and 6-ClO4 were inactive. In order to elucidate the cleavage mechanism, the cleavage of bis(4-nitrophenyl)phosphate (BNPP) and reactive oxygen species (ROS) quenching studies were conducted. The mechanistic pathway of DNA cleavage depends on the ligand’s skeleton: while an oxidative pathway was preferable for 1-Cl/1-ClO4, DNA cleavage by 2-ClO4 and 3-ClO4 predominantly proceeds via a hydrolytic mechanism. Complexes 1-ClO4, 3-ClO4, and 5-Cl were found to be cytotoxic against A2780 cells (IC50 30–40 µM). In fibroblasts, the IC50 value was much higher for 3-ClO4 with no toxic effect.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 633
Author(s):  
Guangyu Wu ◽  
Jingyi Wang ◽  
Qi Liu ◽  
Ran Lu ◽  
Yuhan Wei ◽  
...  

“Smart” polymeric microcapsules with excellent permeability of membranes have drawn considerable attention in scientific and industrial research such as drug delivery carriers, microreactors, and artificial organelles. In this work, hybrid hollow polymeric microcapsules (HPs) containing redox-active gold-sulfide bond were prepared with bovine serum albumin, inorganic metal cluster (AuNCs), and poly(N-isopropylacrylamide) conjugates by using Pickering emulsion method. HPs were transferred from water-in-oil to water-in-water by adding PEGbis(N-succinimidylsuccinate). To achieve redox-responsive membrane, the Au-S bond units incorporated into the microcapsules’ membranes, allowed us to explore the effects of a new stimuli, that is, the redox Au-S bond breaking on the microcapsules’ membranes. The permeability of these hybrid hollow polymeric microcapsules could be sensitively tuned via adding environment-friendly hydrogen peroxide (H2O2), resulting from a fast fracture of Au-S bond. Meanwhile, AuNCs and conjugates could depart from the microcapsules, and enhance the permeability of the membrane. Based on the excellent permeability of the membrane, phosphatase was encapsuled into HPs and p-nitrophenyl phosphate as a substrate. After adding 1 × 10−2 and 1 × 10−4 M H2O2, the catalytic efficiency was nearly 4.06 and 2.22 times higher than that of HPs in the absence of H2O2, respectively. Hence, the unique redox-responsive HPs have potential applications in biocatalytic reaction, drug delivery, and materials as well as in bioscience.


Author(s):  
Martin Šťastný ◽  
Gloria Issa ◽  
Daniela Popelková ◽  
Jakub Ederer ◽  
Martin Kormunda ◽  
...  

The nanostructured manganese oxides (MnOx) exhibited high catalytic activities for hydrolysis of phosphate diester-based substrate bis(4-nitrophenyl)phosphate and decomposition of methanol to carbon monoxide and hydrogen as a potential alternative fuel.


2021 ◽  
Author(s):  
Venkata Swaroopa Datta Devulapalli ◽  
Mélissandre Richard ◽  
Tian-Yi Luo ◽  
Mattheus L. De Souza ◽  
Nathaniel L. Rosi ◽  
...  

The kinetics of hydrolysis of dimethyl nitrophenyl phosphate (DMNP), a simulant of the nerve agent Soman, was studied and revealed transition metal salts as catalysts.


Sign in / Sign up

Export Citation Format

Share Document