inorganic phosphate
Recently Published Documents


TOTAL DOCUMENTS

2445
(FIVE YEARS 179)

H-INDEX

104
(FIVE YEARS 6)

2022 ◽  
Vol 7 (2) ◽  
pp. 71-75
Author(s):  
A O Okezie ◽  
C O Edeogu ◽  
D A Onweh ◽  
E C Ogbodo ◽  
A A Okebalama ◽  
...  

The monitoring of bone fractured healing using Alkaline phosphatase, calcium ion and inorganic phosphate was evaluated among patients with fractured bone in two different centers, Alex Ekwueme Federal University Teaching Hospital Abakaliki and Bone Setters Home, Onueke, Ezza in Ebonyi State between August 2017 and September 2018. : A total of 90 adults patients from 18 years to 78 years were examined using phenolphthalein monophosphate colorimetric end point method. Out of the 90 patients, 30 were healthy normal subjects, another 30 were patients in AE-FUTHA while the remaining 30 patients were in bone setter home. : Patients without bone fracture had the least mean serum level of alkaline phosphatase, 28.5 ± 9.0µl followed by those admitted in bone setter home with a mean serum level of 38.2±17.9µl while patients admitted in AE-FUTHA had the highest mean serum level of 41.4±6.5µl (P<0.05). The mean serum level of calcium was significantly higher 10.9± 2.6mg/dl in healthy normal patients compared to mean serum level of 9.2 ± 3.3mg/dl and 7.4 ± 1.3mg/dl for patients admitted in AE-FUTHA and bone setter home respectively. The mean serum level of inorganic phosphate indicate that patients admitted in bone setter home had the highest mean of 4.1 ± 1.0mg/dl followed by patients admitted in AE-FUTHA 3.4 ± 0.2mg/dl while that of healthy normal individuals had the least mean serum level of 3.2 ± 0.5mg/dl. : Out of the three parameters examined, alkaline phosphatase test was more precise, reliable and patient doctor friendly; hence it can be used as a veritable tool to monitor the process of bone fracture healing effectively.


2021 ◽  
Author(s):  
Johanna Dorst ◽  
Tamas Borbath ◽  
Loreen Ruhm ◽  
Anke Henning

A method to estimate phosphorus (31P) transversal relaxation times (T2) of coupled spin systems is demonstrated. Additionally, intracellular and extracellular pH (pHext, pHint) and relaxation corrected metabolite concentrations are reported. Echo time (TE) series of 31P metabolite spectra were acquired using STEAM localization. Spectra were fitted using LCModel with accurately modeled Vespa basis sets accounting for J−evolution of the coupled spin systems. T2s were estimated by fitting a single exponential two−parameter model across the TE series. Fitted inorganic phosphate frequencies were used to calculate pH, and relaxation times were used to determine the brain metabolite concentrations. The method was demonstrated in the healthy human brain at a field strength of 9.4T. T2 relaxation times of ATP and NAD are the shortest between 8 ms and 20 ms, followed by T2s of inorganic phosphate between 25 ms and 50 ms, and PCr with a T2 of 100 ms. Phosphomonoesters and −diesters have the longest T2s of about 130 ms. Measured T2s are comparable to literature values and fit in a decreasing trend with increasing field strengths. Calculated pHs and metabolite concentrations are also comparable to literature values


2021 ◽  
Vol 5 (2) ◽  
pp. 184-190
Author(s):  
N. N. Kostenevich ◽  
◽  
I. P. Chernikevich ◽  
V. V. Baum ◽  
V. A. Malashenko ◽  
...  

Background. The probability of undergoing surgery always predetermines the state of stress in a person; therefore, it is advisable to search for ways to optimize and (or) reduce this unfavourable effect. Objective. To find out the mechanism of vitamin B1 antistress activity during surgery. Material and methods. Metabolism intensity was investigated on donors’ blood lysates (n = 19) and those of patients with stage III stomach cancer (n = 64), referred to an elective surgery, aged 51-70. The blood was taken from the cubital vein three days before the operation, after premedication, during the most traumatic moment of the operation, after extubation, as well as on the first and third days of the postoperative period. The surgery was performed under combined multicomponent anesthesia using nitric oxide, sodium hydroxybutyrate, and epidural block. Thiamine and thiamine diphosphate kinase activities were assessed by the concentration of the formed thiamine di- and triphosphates of the vitamin. The activities of thiamine mono-, di- and triphosphatases were determined by the release of inorganic phosphate. The concentration of inorganic phosphate was recorded colorimetrically. The content of B1 and its derivatives in the blood was determined by the method of ion-pair reversed-phase HPLC. Results. There has been observed an increased content of thiamine monophosphate and that of free thiamine in the blood of donors and patients with stomach cancer. The registered rate of the hydrolytic thiamine monophosphatase reaction is not high. At the stages of premedication and maximum trauma of surgical exposure, the concentration of monophosphoric ester rapidly decreases alongside with monophosphatase activation. Therefore, the thiamine monophosphate hydrolysis is the rate-limiting link of vitamin B1 metabolism. The level of free thiamine remains persistently increased at all stages of surgical treatment. Thiamine monophosphatase activity is manifested at two pH optima – of 6.0 and 9.0. Thiamine monophosphate hydrolysis at pH of 9.0 is catalyzed by alkaline phosphatase. At pH of 6.0, in addition to thiamine monophosphoric ester, the enzyme hydrolyzes only p-nitrophenyl phosphate, flavin mononucleotide and phosphotyrosine, that allows it to be classified as hepatic acid phosphatase. The noted changes in B1 metabolism under stress concern mainly non-coenzyme forms - thiamine mono-, triphosphate, and free thiamine, which are used at the stages of thiol reduction as important components of insulin synthesis. Conclusions. The use of vitamin B1 allows to optimize the development of the stress response at all stages of surgical treatment. Its protective effect is achieved through the activation of the insulin-synthetic function of the pancreas, which increases the level of immunoreactive insulin in the blood. The formation of the most favorable physiological conditions for insulin synthesis provides an increased background of free thiamine, which is created due to the hydrolysis of noncoenzyme forms of the vitamin. The relationship between thiamine metabolism and B2 exchange and regulation of intracellular signaling pathways has been traced.


2021 ◽  
Author(s):  
Sumire Sasaki ◽  
Yuji Shiozaki ◽  
Ai Hanazaki ◽  
Megumi Koike ◽  
Kazuya Tanifuji ◽  
...  

Abstract Renal type II sodium-dependent inorganic phosphate (Pi) transporters NaPi2a and NaPi2c cooperate with other organs to strictly regulate the plasma Pi concentration. A high Pi load induces the phosphaturic hormones parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), enhances urinary Pi excretion and prevents the onset of hyperphosphatemia. How FGF23 is induced from the bones by a high Pi load and the setpoint of the plasma Pi concentration, however, are unclear. Here, we investigated the role of transporter-associated protein (TRAP), found in gene co-expression networks in NaPi2a and NaPi2c function. TRAP is localized in the renal proximal tubules and interacts with NaPi2a. In TRAP-knockout (KO) mice, the serum FGF23 concentration was markedly increased but increased Pi excretion and hypophosphatemia were not observed. In addition, TRAP-KO mice exhibit reduced NaPi2a responsiveness to FGF23 and PTH administration. Furthermore, a dietary Pi load causes marked hyperphosphatemia and abnormal NaPi2a regulation in TRAP-KO mice. Thus, TRAP is thought to be associated with FGF23 induction in bones and the regulation of NaPi2a to prevent an increase in the plasma Pi concentration due to a high Pi load and kidney injury.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3571
Author(s):  
Tatiana Yu. Plyusnina ◽  
Sergei S. Khruschev ◽  
Polina V. Fursova ◽  
Alexei E. Solovchenko ◽  
Taras K. Antal ◽  
...  

Using a mathematical simulation approach, we studied the dynamics of the green microalga Chlorella vulgaris phosphate metabolism response to shortage and subsequent replenishing of inorganic phosphate in the medium. A three-pool interaction model was used to describe the phosphate uptake from the medium, its incorporation into the cell organic compounds, its storage in the form of polyphosphates, and culture growth. The model comprises a system of ordinary differential equations. The distribution of phosphorous between cell pools was examined for three different stages of the experiment: growth in phosphate-rich medium, incubation in phosphate-free medium, and phosphate addition to the phosphorus-starving culture. Mathematical modeling offers two possible scenarios for the appearance of the peak of polyphosphates (PolyP). The first scenario explains the accumulation of PolyP by activation of the processes of its synthesis, and the decline in PolyP is due to its redistribution between dividing cells during growth. The second scenario includes a hysteretic mechanism for the regulation of PolyP hydrolysis, depending on the intracellular content of inorganic phosphate. The new model of the dynamics of P pools in the cell allows one to better understand the phenomena taking place during P starvation and re-feeding of the P-starved microalgal cultures with inorganic phosphate such as transient PolyP accumulation. Biotechnological implications of the observed dynamics of the polyphosphate pool of the microalgal cell are considered. An approach enhancing the microalgae-based wastewater treatment method based on these scenarios is proposed.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7571
Author(s):  
Petr Sedivy ◽  
Tereza Dusilova ◽  
Milan Hajek ◽  
Martin Burian ◽  
Martin Krššák ◽  
...  

Most in vivo 31P MR studies are realized on 3T MR systems that provide sufficient signal intensity for prominent phosphorus metabolites. The identification of these metabolites in the in vivo spectra is performed by comparing their chemical shifts with the chemical shifts measured in vitro on high-field NMR spectrometers. To approach in vivo conditions at 3T, a set of phantoms with defined metabolite solutions were measured in a 3T whole-body MR system at 7.0 and 7.5 pH, at 37 °C. A free induction decay (FID) sequence with and without 1H decoupling was used. Chemical shifts were obtained of phosphoenolpyruvate (PEP), phosphatidylcholine (PtdC), phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), glycerophosphoetanolamine (GPE), uridine diphosphoglucose (UDPG), glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), 2,3-diphosphoglycerate (2,3-DPG), nicotinamide adenine dinucleotide (NADH and NAD+), phosphocreatine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). The measured chemical shifts were used to construct a basis set of 31P MR spectra for the evaluation of 31P in vivo spectra of muscle and the liver using LCModel software (linear combination model). Prior knowledge was successfully employed in the analysis of previously acquired in vivo data.


2021 ◽  
pp. 2100224
Author(s):  
Qiu‐Chen Bi ◽  
Rong‐Guang Luo ◽  
Yan‐Shu Li ◽  
Jun Zhao ◽  
Xin Fu ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3427
Author(s):  
María Cambra-López ◽  
Verónica Moset ◽  
María del Carmen López ◽  
Juan Sebastián Mesa ◽  
Laura Carpintero ◽  
...  

The objective of this study was to compare the total tract (total excreta and marker) and prececal methodologies to determine phosphorus (P) digestibility and to evaluate its variation as a function of the physicochemical characteristics of the inorganic phosphate used (monocalcium, MCP and dicalcium, DCP) from different commercial sources. A total of 176 1-day-old male broilers were used in two digestibility experiments. In Experiment 1, one MCP and one DCP were incorporated in the basal diet at two levels. In Experiment 2, MCP and DCP from three commercial sources were incorporated to the basal diet at one level. Physicochemical characteristics of inorganic phosphates were examined, as well. Additionally, bone mineralization and growth performance traits were investigated in both trials. The digestibility of MCP ranged from 75.2 to 87.4% and from 80.5 to 86.6% for DCP amongst methodologies, but differences between total tract and preceal methodologies were not statistically significant. Particle size, surface area, degree of crystallinity and impurities varied amongst commercial sources. The P digestibility of the three tested commercial sources of MCP was 79.6% (MCP1), 70.2% (MCP2) and 65.6% (MCP3); p > 0.05. The P digestibility of the 3 tested commercial sources of DCP was 80.1% (DCP1), 77.4% (DCP2) and 71.4% (DCP3); p > 0.05.


2021 ◽  
Author(s):  
Belay Berza ◽  
Jegan Sekar ◽  
Prabavathy VR ◽  
Marcela C Pagano ◽  
Fassil Assefa

Abstract Background: The majority of phosphorous in the soil is fixed and unavailable to plant nutrition, hence in scarcity. Phosphate solubilizing bacteria, the ecological engineers, are considered as the best, sustainable and eco-friendly options. The objectives of this study were to screen and evaluate inorganic phosphate solubilizing efficiency and assess multiple plant growth promoting traits of E. brucei root nodule bacterial endophytes.Results: A total of 304 nodule bacterial endophytes were screened for phosphate solubilization potential on solid PA medium among which 119 (39%) were potential tricalcium phosphate solubilizers. None of these isolates were able to form clearly visible halos on aluminum phosphate (AlPO4), Al-P or iron phosphate (FePO4), Fe-P supplemented PA medium. Out of 119 inorganic phosphate solubilizing endophytes, 40.3% were IAA producers. Based on phosphate solubilization index, the potential bacterial endophytes were identified to Gluconobacter cerinus, Acinetobacter soli, Achromobacter xylosoxidans and Bacillus thuringiensis using the 16S rRNA gene sequences analysis. All the selected isolates were potential solubilizers of the three inorganic phosphates (Al-P, Fe-P and tricalcium phosphate, TCP) included in liquid NBRIP medium. The highest values of solubilized TCP were recorded by isolates AU4 and RG6 (A. soli), 108.96 mg L-1 and 107.48 mg L-1, respectively at sampling day3 and 120.36 mg L-1 and 112.82 mg L-1, respectively at day 6. The highest values of solubilized Al-P and Fe-P were recorded by isolate RG6, 102.14 mg L-1 and 96.07 mg L-1, respectively at sampling days 3 and 6, respectively. The highest IAA, 313.61µg mL-1 was recorded by isolate DM17 (B. thuringiensis). These selected potential isolates were also HCN, NH3, and hydrolytic enzymes producers. The isolates were also varied in tolerance to eco-physiological stressors and exhibited versatility to carbon and nitrogen substrate utilization. Conclusions: The genera and species Gluconobacter cerinus, Acinetobacter soli, Achromobacter xylosoxidans and Bacillus thuringiensis are the first reports from E .brucei root nodules and Gluconobacter is also the first report to the science as phosphate solubilizer. Isolates AU4 and RG (A. soli) could be potential bio-inoculant candidates for the growth enhancement of the host plant for better agro-forestry practices in acidic and alkaline soils in Ethiopia.


2021 ◽  
Author(s):  
Magdalena Fortova ◽  
Lenka Hanouskova ◽  
Martin Valkus ◽  
Jana Cepova ◽  
Richard Prusa ◽  
...  

Background: Fibroblast growth factor-23 (FGF23) is a key regulator of urine phosphate excretion. The aim of the study was to investigate the perioperative (intraoperative and postoperative) changes of plasma intact and C-terminal FGF23 (iFGF23, cFGF23) concentrations in patients with primary hyperparathyroidism (pHPT) submitted to surgery. Materials and methods: Study involved 38 adult patients with pHPT caused by adenoma. PTH levels were investigated intraoperatively (just before the incision and 10 minutes after adenoma excision). cFGF23, iFGF23, phosphate, eGFR and P1NP were measured intraoperatively and postoperatively (next day after the surgery). Results: PTH levels decreased intraoperatively (13.10 vs. 4.17 pmol/L, P<0.0001). FGF23 levels measured intraoperatively were at the upper level of reference interval. cFGF23 decreased postoperatively compared with values measured just before the incision (cFGF23: 89.17 vs. 22.23 RU/mL, P<0.0001). iFGF23 decreased as well, but postoperative values were low. Postoperative inorganic phosphate values increased (1.03 mmol/L vs. 0.8 mmol/L, P=0.0025). We proved significant negative correlation of perioperative FGF23 with inorganic phosphate (cFGF23: Spearman r=-0.253,P=0.0065; iFGF23: Spearman r =-0.245, P=0.0085). We also found FGF23 values just before incision correlated with eGFR (cystatin C) (cFGF23: Spearman r=-0.499, P=0.0014; iFGF23: Spearman r=-0.413, P=0.01). Conclusion: Intraoperative iFGF23 and cFGF23 did not change despite PTH decreased significantly. cFGF23 and iFGF23 significantly decreased one day after parathyroidectomy and are associated with increase of inorganic phosphate in pHPT patients. cFGF23 and iFGF23 just before incision correlated with eGFR (cystatin C). The similar results found in both iFGF23 and cFGF23 suggest each could substitute the other.


Sign in / Sign up

Export Citation Format

Share Document