Formulation of Poorly Water-Soluble Compound Loaded Solid Lipid Nanoparticles in a Microchannel System Fabricated by Mechanical Microcutting Method: Puerarin as a Model Drug

2012 ◽  
Vol 51 (35) ◽  
pp. 11373-11380 ◽  
Author(s):  
Linhong Xu ◽  
Xu Tan ◽  
Junxian Yun ◽  
Shaochuan Shen ◽  
Songhong Zhang ◽  
...  
2020 ◽  
Vol 10 (5-s) ◽  
pp. 224-228
Author(s):  
Pranav Agrawal ◽  
Amol Tatode ◽  
Milind Umekar

Solid lipid nanoparticles are the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery, clinical medicine and research.  Due to its solid state it has greater stability than other nanocarrier systems. There are several other advantages like sustained release, improves bioavaibility and delivery of poorly water soluble drugs, helps in control of several pharmacokinetic parameters of drugs due to which use of SLN is increasing day by day. Various techniques can be used for the formulation of SLN i.e. solvent evaporation, microemulsification technique, high pressure homogenization and supercritical fluid method. It has several applications likes it is use in gene transfer therapy, also use in different drug delivery systmer like oral and pulmonary drug delivery system. Due to several advantages SLNs are widely used in chemotherapy for the treatment of the cancer. The use of SLN for the delivery of Docetaxel to tumor site have several benefits likes site specific delivery, less toxic effect, more cell cytotoxicity and more bioavaibility which leads to decrease in the dosing frequency.  Docetaxel is an anticancer agent extracted from plant Taxus Baccata which is widely used in chemotherapy to treat cancer. This article contains the detail information of about the advantages, disadvantages, different method of preparation and several SLN loaded with Docetaxel. Keywords: Solid lipid nanoparticles, drug delivery, clinical medicine, poorly water soluble drugs


2020 ◽  
Vol 10 (4) ◽  
pp. 404-418
Author(s):  
Kruti Borderwala ◽  
Ganesh Swain ◽  
Namrata Mange ◽  
Jaimini Gandhi ◽  
Manisha Lalan ◽  
...  

Background: The objective of this study was to develop solid lipid nanoparticles (SLNs) of poorly water soluble anti-hyperlipidemic drugs-Ezetimibe in combination with Simvastatin. Methods: This study describes a 32 full factorial experimental design to optimize the formulation of drug loaded lipid nanoparticles (SLN) by the high speed homogenization technique. The independent variables amount of lipid (GMS) and amount of surfactant (Poloxamer 188) were studied at three levels and arranged in a 32 factorial design to study the influence on the response variables- particle size, % entrapment efficiency (%EE) and cumulative drug release (% CDR) at 24 h. Results: The particle size, % EE and % CDR at 24 h for the 9 batches (B1 to B9) showed a wide variation of 104.6-496.6 nm, 47.80-82.05% (Simvastatin); 48.60-84.23% (Ezetimibe) and 54.64-92.27% (Simvastatin); 43.8-97.1% (Ezetimibe), respectively. The responses of the design were analysed using Design Expert 10.0.2. (Stat-Ease, Inc, USA), and the analytical tools of software were used to draw response surface plots. From the statistical analysis of data, polynomial equations were generated. Optimized formulation showed particle size of 169.5 nm, % EE of 75.43% (Simvastatin); 79.10% (Ezetimibe) and 74.13% (Simvastatin); 77.11% (Ezetimibe) %CDR after 24 h. Thermal analysis of prepared solid lipid nanoparticles gave indication of solubilisation of drugs within lipid matrix. Conclusion: Fourier Transformation Infrared Spectroscopy (FTIR) showed the absence of new bands for loaded solid lipid nanoparticles indicating no interaction between drugs and lipid matrix and being only dissolved in it. Electron microscope of transmission techniques indicated sphere form of prepared solid lipid nanoparticles with smooth surface with size approximately around 100 nm.


2011 ◽  
Vol 364 ◽  
pp. 313-316 ◽  
Author(s):  
Karn Orachai Kullavadee ◽  
Ruktanonchai Uracha ◽  
Siwaporn Meejoo Smith

SLN have shown a great promise as an alternative drug carrier for intravenous and dermal applications. This work focuses on the basic properties of drug-free Compritol® ATO 888 based SLN systems by using cationic surfactant (CPC) and nonionic surfactant (Tween 80). Effects of surfactant on the physical properties of SLNs were investigated in the absence of model drug to avoid the interaction between drug and surfactant. These SLN samples have different particle size, zeta potential and morphology. DSC was used to quantify the crystallinity of SLN systems. It was found that %RI of both SLNs was similar, indicating that types of surfactant did not affect on crystallization of solid lipid. Spherical-like particle was observed with SLN-C, while rod-like particle was found with SLN-T. The results demonstrated that surfactant plays an important role on SLN physical characteristics.


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Aparna Bhalerao ◽  
Pankaj Prakash Chaudhari

Cilinidipine is a fourth generation N and L-type calcium channel antagonists used alone or in combination with another drug to treat hypertension. Cilnidipine is poorly water -soluble, BCS class II drug with 6 to 30 percent oral bioavailability due to first pass metabolism. So to protect the drug from degradation and improve its dissolution, solid lipid nanoparticles were prepared. Glyceryl monostearate was selected as lipid while span 20: tween 20 were selected as surfactant blends. The formulations were evaluated for various parameters, as percent transmittance, drug content, percent encapsulation efficiency; percent drug loading, In vitro drug release and particle size. Optimized formulation was lyophilized using lactose as a cryo-protectant. The lyophilized formulation was evaluated for micromeritic properties, particle size and in vitro dissolution. It was further evaluated for DSC, XRD, and SEM. Percent encapsulation efficiency and percent drug loading of optimized formulation (F3) were 78.66percent and 9.44percent respectively. The particle size of F3 formulation without drug was 204 nm and with the drug was 214 nm. The particle size of the reconstituted SLN was 219 nm. In DSC study, no obvious peaks for cilnidipine were found in the SLN of cilnidipine indicated that the cilnidipine must be present in a molecularly dissolved state in SLN. In X-ray diffractometry absence of peaks representing crystals of cilnidipine in SLN indicated that the drug was in an amorphous or disordered crystalline phase in the lipid matrix. Thus, solid lipid nanoparticle formulation is a promising way to enhance the dissolution rate of cilnidipine. Keywords: Cilnidipine, Solid Lipid Nanoparticle, Hypertension


Sign in / Sign up

Export Citation Format

Share Document