Efficient Retrofitting Approach for Improving Heat Recovery in Heat Exchanger Networks with Heat Transfer Intensification

2014 ◽  
Vol 53 (27) ◽  
pp. 11107-11120 ◽  
Author(s):  
Ming Pan ◽  
Igor Bulatov ◽  
Robin Smith
2021 ◽  
Author(s):  
Yousuf Farooq

The aim of this project was to design a condensing heat exchanger to recover waste heat from an industrial clothes dryer. Industrial cloth dryers are inefficient in their use of energy because almost all of the energy input in the dryer is wasted in the atmosphere, and thus there is great potential for heat recovery. This energy can be used to preheat the incoming cold water, and the conventional heater can then heat the water to a final temperature. The warm moist air from the dryer carries both sensible and latent heat, and in order to design this heat recovery condensing heat exchanger, the heat transfer by both mass and sensible heat has to be accounted for. The basis of this heat and mass transfer problem was the energy balance at the interface, and separate models for the calculation of latent and sensible heat transfer were used. The mass transfer coefficients were obtained from an analogy with heat transfer, and the unknown interface temperature was solved for iteratively. The data for this design was collected from a 20 kW dryer, and the heat recovery from that dryer was observed to be about 17.3%. This heat recovery condensing heat exchanger efficiency can be enhanced by the addition of more coils to the heat exchanger. An improvement in the overall results can be expected if a practical study is done on the condensation heat exchanger for an industrial cloth dryer.


Author(s):  
Yu Zhu ◽  
Fengye Yang ◽  
Yueguang Guo

Abstract To improve the fuel efficiency of automobile engines and reduce pollution owing to automobile exhaust, this study discusses a fixed-curvature spiral-coil heat exchanger that recovers exhaust heat. Herein, the heat transfer performance of the spiral coil is studied via experimental testing and numerical simulation. In this study, a new type of variable-curvature spiral coil is designed to improve the efficiency of the heat exchanger. The effect of different conical angles on the resistance and heat transfer performance of the spiral coil within a range of Reynolds numbers of 4000–14,000 was analyzed. The heat exchange efficiency is a combination of the convective heat transfer and the overall heat recovery. The results of this study indicate that for a spiral-coil tube of length L, increasing the cone angle improves the convective heat transfer outside the tube. However, as the flow resistance increases, the exhaust heat recovery of a variable-curvature spiral-coil heat exchanger (VSE) is up to 18.8% higher than that of a constant curvature spiral-coil heat exchanger. The combined performance of VSE is excellent when the cone angle is 15 deg.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1472 ◽  
Author(s):  
Christian Langner ◽  
Elin Svensson ◽  
Simon Harvey

Retrofitting of industrial heat recovery systems can contribute significantly to meeting energy efficiency targets for industrial plants. One issue to consider when screening retrofit design proposals is that industrial heat recovery systems must be able to handle variations, e.g., in inlet temperatures or heat capacity flow rates, in such a way that operational targets are reached. Consequently, there is a need for systematic retrofitting methodologies that are applicable to multi-period heat exchanger networks (HENs). In this study, a framework was developed to achieve flexible and cost-efficient retrofit measures of (industrial) HENs. The main idea is to split the retrofitting processes into several sub-steps. This splitting allows well-proven (single period) retrofit methodologies to be used to generate different design proposals, which are collected in a superstructure. By means of structural feasibility assessment, structurally infeasible design proposals can be discarded from further analysis, yielding a reduced superstructure. Additionally, critical point analysis is applied to identify those operating points within the uncertainty span that determine necessary overdesign of heat exchangers. In the final step, the most cost-efficient design proposal within the reduced superstructure is identified. The proposed framework was applied to a HEN retrofit case study to illustrate the proposed framework.


Sign in / Sign up

Export Citation Format

Share Document