Examination of ion-molecule reactions in chlorosilanes by Fourier transform ion cyclotron resonance spectrometry and determination of the relative stabilities of chlorosilyl ions

1992 ◽  
Vol 96 (3) ◽  
pp. 1247-1257 ◽  
Author(s):  
Srihari Murthy ◽  
J. L. Beauchamp
1976 ◽  
Vol 31 (5) ◽  
pp. 414-421 ◽  
Author(s):  
Karl-Peter Wanczek

Abstract The mass spectrum of tetramethyldiphosphine and the ion chemistries of this compound and of its mixtures with phosphine and dimethylphosphine have been investigated by ion cyclotron resonance spectrometry. Numerous ion molecule reactions have been observed. The rate constants of the two most abundant ions formed by the molecular ion, the tetramethyldiphosphonium ion, H(CH3)2P-P(CH3)2+ and the hexamethyltriphosphonium ion, P3(CH3)6+ , are k2.35≦0.1X10-10 cm3 molecule-1 s-1 and k2.40 = 1.5 X10-10 cm3 molecule -1 s -1 respectively. The structures of several ions have been determined with the aid of their ion-molecule reactions. The ions m/e = 79 and 93 are thought to have the structures HP - P(CH3)H+ and HP-P(CH3)2+ . The most probable structures of the ions m/e = 169 and 183 are HP(CH3)2-P(CH3)-P(CH3)2+ and (CH3)2P-P(CH3) - P(CH3)3+ . The protonated molecule undergoes several ion-molecule reactions, which proceed via an intermediate, m/e = 183, [(CH3)6P3+]* which is detected by double resonance experiments.


Sign in / Sign up

Export Citation Format

Share Document