crude oils
Recently Published Documents


TOTAL DOCUMENTS

2705
(FIVE YEARS 371)

H-INDEX

83
(FIVE YEARS 7)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 123001
Author(s):  
Shuai Zhao ◽  
Wanfen Pu ◽  
Jingjun Pan ◽  
Sen Chen ◽  
Liwei Zhang
Keyword(s):  

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122939
Author(s):  
Martha L. Chacón-Patiño ◽  
Jenny Nelson ◽  
Estrella Rogel ◽  
Kyle Hench ◽  
Laura Poirier ◽  
...  
Keyword(s):  

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Said Gharby

This review presents recent technologies involved in vegetable oil refining as well as quality attributes of crude oils obtained by mechanical and solvent extraction. Usually, apart from virgin oils, crude oils cannot be consumed directly or incorporated into various food applications without technological treatments (refining). Indeed, crude oils like soybean, rapeseed, palm, corn, and sunflower oils must be purified or refined before consumption. The objective of such treatments (chemical and physical refining) is to get a better quality, a more acceptable aspect (limpidity), a lighter odor and color, longer stability, and good safety through the elimination of pollutants while minimizing oil loss during processing. However, the problem is that refining removes some essential nutrients and often generates other undesirable compounds such as 3-MCPD-esters and trans-fatty acids. These compounds directly influence the safety level of refined oil. Advantages and drawbacks of both chemical and physical refining were discussed in the light of recent literature. Physical refining has several advantages over chemical one.


2022 ◽  
pp. 014459872110695
Author(s):  
Dingsheng Cheng ◽  
Lirong Dou ◽  
Qingyao Chen ◽  
Wenqiang Wang

The Bongor Basin is a typical lacustrine passive-rifted basin situated in the West and Central African Rift System (WCARS). It has experienced two phases of tectonic inversion and features a complex process of petroleum generation and accumulation. A total of 41 crude oil samples from the basin were geochemically analyzed to investigate their compositions of molecular markers. The results show that the oils have similar origins and are likely to belong to the same oil population. However, there are significant differences in geochemical characteristics and physical properties, caused by the secondary alteration. The relative contents and distribution patterns of normal alkanes and acyclic isoprenoids indicate that some of the oils have suffered biodegradation to varying degrees. The samples can be divided into three categories according to their relative degrees of degradation: normal oil, slightly biodegraded oil (PM 1–3), and severely biodegraded oil (PM 5–7). The burial depth of oil reservoirs in this area is the predominant factor impacting on the level of biodegradation. Crude oils in reservoirs with burial depths of less than 800 m are all severely biodegraded, while oils in reservoirs with burial depths greater than 1300 m have experienced no evident biodegradation. In reservoirs with burial depths between 800 m and 1300 m, the biodegradation degrees vary from normal to severely biodegraded. Oil reservoirs with burial depths less than 1300 m and adjacent to major faults are readily subject to biodegradation, while reservoirs with similar burial depths, but a certain distance away from major faults, have suffered no evident biodegradation. Moreover, if primary reservoirs have been modified by tectonic activity after accumulation, the crude oils are more likely to be biodegraded. Faulted anticline traps may create more favorable geological conditions for preservation of crude oil than reverse extrusion anticline reservoirs. This study may provide practical guidance for the assessment and prediction of oil quality in future oil exploration.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 34
Author(s):  
Abiodun Busuyi Ogbesejana ◽  
Bo Liu ◽  
Mehdi Ostadhassan

Over time, stable isotopes have proven to be a useful tool in petroleum geochemistry. However, there is currently insufficient literature on stable isotope geochemistry of the organic elements within shales and crude oils in many petroleum systems around the world. As a result, this paper critically reviews the early and recent trends in stable isotope geochemistry of organic elements in shales and crude oils. The bulk and compound-specific stable isotopes of H, C, and S, as well as their uses as source facies, depositional environments, thermal maturity, geological age, and oil–oil and oil–source rock correlation studies, are all taken into account. The applications of the stable isotopes of H and C in gas exploration are also discussed. Then, the experimental and instrumental approaches to the stable isotopes of H, C, and S, are discussed.


2021 ◽  
Vol 45 (1) ◽  
pp. 79-94
Author(s):  
Liliana López ◽  
Jesús A. Romero ◽  
Salvador Lo Mónaco
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document