A high-temperature fast-flow-reactor kinetics study of the reaction aluminum monoxide + carbon dioxide .fwdarw. aluminum dioxide + carbon monoxide. Thermochemical implications

1986 ◽  
Vol 90 (8) ◽  
pp. 1688-1691 ◽  
Author(s):  
Donald F. Rogowski ◽  
Andrew J. English ◽  
Arthur Fontijn
1972 ◽  
Vol 43 (5) ◽  
pp. 726-730 ◽  
Author(s):  
Arthur Fontijn ◽  
Shelby C. Kurzius ◽  
James J. Houghton ◽  
John A. Emerson

1975 ◽  
Vol 34 (2) ◽  
pp. 398-402 ◽  
Author(s):  
William Felder ◽  
Arthur Fontijn

1973 ◽  
Vol 14 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Arthur Fontijn ◽  
Shelby C. Kurzius ◽  
James J. Houghton

1.It may be taken as an axiom of electrical ignition that the closer its conditions resemble those in the explosion wave front the more readily will it occur. These conditions are high temperature and pressure, and in the case of hydrocarbons combustion to carbon monoxide. They are also characteristic of condenser discharge sparks, for in the first place the surface of a platinum pole to which condenser discharge has been made becomes pitted to a remarkable extent, greater than when large currents are broken by separation of the poles. The sparks have therefore a high temperature. That they give rise to high gas pressure is clear from the intensity of the sound of a single spark discharge, and finally it will be shown that combustion to carbon monoxide rather than to carbon dioxide is peculiar in certain cases to ignition by capacity sparks. In addition to these the sparks are of very short duration, are oscillatory in character, and start with ionisation or breakdown of the gas between the poles. The belief that all visible sparks will ignite explosive mixtures no doubt arose from observations of the activity of condenser discharge in this respect, but while in certain cases, especially in the ignition of hydrogen, the least is in every case a well marked limit to their igniting power, and as the percentage of gas limits of inflammability are approached they require to be large. 2. The Paraffins—Ethane, Propane, and Butane .—The gases used in the present work were from the same stocks as those used for break-spark ignition. The results obtained from them are given in fig. 1. They have two interesting features; their minimum igniting current is the same in every case, in this resembling their ignition by continuous current break-sparks, but they have the parabolic form characteristic of alternating current break-spark ignition. Ethane has, however, a minimum at 7∙7 per cent., the point of combustion to carbon monoxide, the others, as before, midway between this and combustion to carbon dioxide. There is, however, on the higher side of the ethane and propane curves—the supply of butane gave out before this could be examined fully—a step or increase in difficulty of ignition corresponding to mixtures midway between four and five atoms of oxygen to one molecule of ethane, and between six and seven to one of propane. This point was thought to be some failure in the quality of the gas, but when it appeared in both, and to a still greater extent in methane, it was more fully examined. Condenser-spark ignition has therefore some of the features of both continuous and low frequency alternating current break-spark ignition, but it has a characteristic type of its own.


Sign in / Sign up

Export Citation Format

Share Document