Absolute configuration of epoxyeicosatrienoic acids (EETs) formed during catalytic oxygenation of arachidonic acid by purified rat liver microsomal cytochrome P-450

1984 ◽  
Vol 106 (11) ◽  
pp. 3334-3336 ◽  
Author(s):  
J. R. Falck ◽  
S. Manna ◽  
Harry R. Jacobson ◽  
R. W. Estabrook ◽  
N. Chacos ◽  
...  
1993 ◽  
Vol 264 (2) ◽  
pp. H327-H335 ◽  
Author(s):  
M. Rosolowsky ◽  
W. B. Campbell

Metabolites of arachidonic acid regulate several physiological processes, including vascular tone. The purpose of this study was to determine which metabolites of arachidonic acid are produced by bovine coronary arteries and which may regulate coronary vascular tone. Arachidonic acid induced a concentration-related, endothelium-dependent relaxation [one-half maximum effective concentration (EC50) of 2 x 10(-7) M and a maximal relaxation of 91 +/- 2% at 10(-5) M] of bovine coronary arteries that were contracted with U-46619, a thromboxane mimetic. The concentration of 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), a metabolite of prostaglandin I2 (PGI2), increased from 82 +/- 6 to 328 +/- 24 pg/ml with arachidonic acid (10(-5) M). Treatment with the cyclooxygenase inhibitor indomethacin attenuated arachidonic acid-induced relaxations by approximately 50% and blocked the synthesis of 6-keto-PGF1 alpha. PGI2 caused a concentration-related relaxation (EC50 of 10(-8) M and a maximal relaxation of 125 +/- 11% at 10(-7) M). BW755C, a cyclooxygenase and lipoxygenase inhibitor, inhibited arachidonic acid-induced relaxation to the same extent as indomethacin. When vessels were treated with both indomethacin and BW755C, the inhibition of relaxation was the same as either inhibitor alone. SKF 525a, a cytochrome P-450 inhibitor, reduced arachidonic acid-induced relaxation by approximately 50%. When SKF 525a was given in combination with indomethacin, the relaxation by arachidonic acid was almost completely inhibited. SKF 525a inhibited the synthesis of epoxyeicosatrienoic acids (EETs).(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
pp. 157-169
Author(s):  
Yoshiaki Fujii-Kuriyama ◽  
Kazuhiro Sogawa ◽  
Yuzuru Mizukami ◽  
Yorimasa Suwa ◽  
Masami Muramatsu ◽  
...  

1986 ◽  
Vol 35 (8) ◽  
pp. 1391-1394 ◽  
Author(s):  
Peng Renxiu ◽  
Zhu Xiu-Yuan ◽  
Chung S. Yang

2000 ◽  
Vol 279 (2) ◽  
pp. H863-H871 ◽  
Author(s):  
Kristopher G. Maier ◽  
Lisa Henderson ◽  
Jayashree Narayanan ◽  
Magdalena Alonso-Galicia ◽  
John R. Falck ◽  
...  

This study describes a fluorescent HPLC assay for measuring 20-hydroxyeicosatetraenoic acid (20-HETE) and other cytochrome P-450 metabolites of arachidonic acid in urine, tissue, and interstitial fluid. An internal standard, 20-hydroxyeicosa-6( Z),15( Z)-dienoic acid, was added to samples, and the lipids were extracted and labeled with 2-(2,3-naphthalimino)ethyl trifluoromethanesulfonate. P-450 metabolites were separated on a C18 reverse-phase HPLC column. Coelution and gas chromatography-mass spectrometry studies confirmed the identity of the 20-HETE peak. The 20-HETE peak can be separated from those for dihydroxyeicosatrienoic acids, other HETEs, and epoxyeicosatrienoic acids. Known amounts of 20-HETE were used to generate a standard curve (range 1–10 ng, r 2 = 0.98). Recovery of 20-HETE from urine averaged 95%, and the intra-assay variation was <5%. Levels of 20-HETE were measured in 100 μl of urine and renal interstitial fluid or 0.1 mg of renal tissue. The assay was evaluated by studying the effects of 1-aminobenzotriazole (ABT) on the excretion of 20-HETE in rats. ABT reduced excretion of 20-HETE by >65% and inhibited the formation of 20-HETE by renal microsomes. The availability of this assay should facilitate work in this field.


Sign in / Sign up

Export Citation Format

Share Document