epoxyeicosatrienoic acids
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 43)

H-INDEX

61
(FIVE YEARS 3)

2021 ◽  
Vol 14 (12) ◽  
pp. 1323
Author(s):  
Juan Martín-López ◽  
Sandra Codony ◽  
Clara Bartra ◽  
Christophe Morisseau ◽  
María Isabel Loza ◽  
...  

The pharmacological inhibition of soluble epoxide hydrolase (sEH) has been suggested as a potential therapy for the treatment of pain and inflammatory diseases through the stabilization of endogenous epoxyeicosatrienoic acids. Numerous potent sEH inhibitors (sEHI) have been developed, however many contain highly lipophilic substituents limiting their availability. Recently, a new series of benzohomoadamantane-based ureas endowed with potent inhibitory activity for the human and murine sEH was reported. However, their very low microsomal stability prevented further development. Herein, a new series of benzohomoadamantane-based amides were synthetized, fully characterized, and evaluated as sEHI. Most of these amides were endowed with excellent inhibitory potencies. A selected compound displayed anti-inflammatory effects with higher effectiveness than the reference sEHI, TPPU.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingyang Yi ◽  
Qiang Zhou ◽  
Ting Qing ◽  
Bing Ming ◽  
Jing Lin ◽  
...  

Abstract Background Early identification of massive middle cerebral artery infarction (MCAI) at risk for malignant MCAI (m-MCAI) may be useful in selecting patients for aggressive therapies. The aim of this study was to determine whether CYP metabolites may help to predict impending m-MCAI. Methods This is a prospective, two-center observational study in 256 patients with acute massive MCAI. Plasma levels of 20-hydroxyeicosatetraenoic acid (20-HETE), epoxyeicosatrienoic acids, and dihydroxyeicosatrienoic acids were measured at admission. Brain computed tomography (CT) was performed at admission and repeated between day 3 and 7, or earlier if there was neurological deterioration. The primary outcome was m-MCAI. The m-MCAI was diagnosed when follow-up brain CT detected a more than two-thirds space-occupying MCAI with midline shift, compression of the basal cisterns, and neurological worsening. Results In total of 256 enrolled patients, 77 (30.1%) patients developed m-MCAI. Among the 77 patients with m-MCAI, 60 (77.9%) patients died during 3 months of stroke onset. 20-HETE level on admission was significantly higher in patients with m-MCAI than those without m-MCAI. There was an increase in the risk of m-MCAI with increase of 20-HETE levels. The third and fourth quartiles of 20-HETE levels were independent predictors of m-MCAI (OR: 2.86; 95% CI: 1.16 – 6.68; P = 0.025, and OR: 4.23; 95% CI: 1.35 – 8.26; P = 0.002, respectively). Conclusions Incidence of m-MCAI was high in patients with massive MCAI and the prognosis of m-MCAI is very poor. Elevated plasma 20-HETE may be as a predictor for m-MCAI in acute massive MCAI, and it might useful in clinical practice in therapeutic decision making.


2021 ◽  
Vol 22 (21) ◽  
pp. 12029
Author(s):  
Yan Zhou ◽  
Haroon Khan ◽  
Jianbo Xiao ◽  
Wai San Cheang

Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.


2021 ◽  
Vol 22 (19) ◽  
pp. 10714
Author(s):  
Xin-Xin Guan ◽  
Dong-Ning Rao ◽  
Yan-Zhe Liu ◽  
Yong Zhou ◽  
Hui-Hui Yang

Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiong Hu ◽  
Marco Sisignano ◽  
Roman Brecht ◽  
Natarajan Perumal ◽  
Carlo Angioni ◽  
...  

AbstractCytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44−/− and sEH−/− mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kai-Di Ni ◽  
Jun-Yan Liu

The cytochrome P450 (CYP) ω-hydroxylases are a subfamily of CYP enzymes. While CYPs are the main metabolic enzymes that mediate the oxidation reactions of many endogenous and exogenous compounds in the human body, CYP ω-hydroxylases mediate the metabolism of multiple fatty acids and their metabolites via the addition of a hydroxyl group to the ω- or (ω-1)-C atom of the substrates. The substrates of CYP ω-hydroxylases include but not limited to arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, epoxyeicosatrienoic acids, leukotrienes, and prostaglandins. The CYP ω-hydroxylases-mediated metabolites, such as 20-hyroxyleicosatrienoic acid (20-HETE), 19-HETE, 20-hydroxyl leukotriene B4 (20-OH-LTB4), and many ω-hydroxylated prostaglandins, have pleiotropic effects in inflammation and many inflammation-associated diseases. Here we reviewed the classification, tissue distribution of CYP ω-hydroxylases and the role of their hydroxylated metabolites in inflammation-associated diseases. We described up-regulation of CYP ω-hydroxylases may be a pathogenic mechanism of many inflammation-associated diseases and thus CYP ω-hydroxylases may be a therapeutic target for these diseases. CYP ω-hydroxylases-mediated eicosanods play important roles in inflammation as pro-inflammatory or anti-inflammatory mediators, participating in the process stimulated by cytokines and/or the process stimulating the production of multiple cytokines. However, most previous studies focused on 20-HETE,and further studies are needed for the function and mechanisms of other CYP ω-hydroxylases-mediated eicosanoids. We believe that our studies of CYP ω-hydroxylases and their associated eicosanoids will advance the translational and clinal use of CYP ω-hydroxylases inhibitors and activators in many diseases.


Sign in / Sign up

Export Citation Format

Share Document