Acidity in nonaqueous solvents. VII. Proton transfers in dipolar aprotic solvents. 5. Solvation and geometric factors in the rates of proton transfer reactions

1969 ◽  
Vol 91 (24) ◽  
pp. 6749-6753 ◽  
Author(s):  
Calvin D. Ritchie

1984 ◽  
Vol 62 (5) ◽  
pp. 954-957 ◽  
Author(s):  
Arnold Jarczewski ◽  
Przemyslaw Pruszynski ◽  
Mohammed Kazi ◽  
Kenneth T. Leffek

The carbon acid 1-(4-nitrophenyl)-1-nitroethane reacts with phenyltetramethylguanidine in the aprotic solvents acetonitrile, benzonitrile, and chlorobenzene in a bimolecular proton transfer reaction. The primary isotope effects, kH/kD, for these reactions at 25 °C are 8.5 ± 0.4, 6.1 ± 0.4, and 16 in acetonitrile, benzonitrile, and chlorobenzene respectively. The magnitude of the isotope effects on the enthalpy of activation [Formula: see text] are 2.3 ± 0.2, 1.6 ± 0.7, and 4.2 ± 0.6 kcal mol−1, which indicates a contribution from proton tunnelling to the reaction rate of the normal substrate.





1972 ◽  
Vol 50 (1) ◽  
pp. 24-30 ◽  
Author(s):  
A. Jarczewski ◽  
K. T. Leffek

The second-order rate constants have been measured over a range of temperatures for the proton-transter reactions from di-(4-nitrophenyl)methane to ethoxide, isopropoxide, and t-butoxide ions in solvents consisting of the corresponding alcohols containing 10% toluene by volume. The activation parameters ΔH≠ and ΔS≠ have been calculated and an interpretation of them is given in terms of solvation effects during the activation process. A comparison between the activation parameters for proton transfers and E2 olefin-forming β-elimination reactions is made and discussed with respect to transition state character of the latter reactions.





Sign in / Sign up

Export Citation Format

Share Document