Nitrogen Kinetic Isotope Effects for the Monoamine Oxidase B-Catalyzed Oxidation of Benzylamine and (1,1-2H2)Benzylamine: Nitrogen Rehybridization and CH Bond Cleavage Are Not Concerted

2011 ◽  
Vol 133 (32) ◽  
pp. 12319-12321 ◽  
Author(s):  
Susanna MacMillar ◽  
Dale E. Edmondson ◽  
Olle Matsson
2015 ◽  
Vol 93 (4) ◽  
pp. 463-467 ◽  
Author(s):  
Jefferson Chan ◽  
Ariel Tang ◽  
Andrew J. Bennet

The transition state for the hydronium-ion-promoted hydrolysis of α-d-glucopyranosyl fluoride in water has been characterized by combining multiple kinetic isotope effect measurements with theoretical modelling. The measured kinetic isotope effects for the C1-deuterium, C2-deuterium, C5-deuterium, anomeric carbon-13, and ring oxygen-18 are 1.219 ± 0.021, 1.099 ± 0.024, 0.976 ± 0.014, 1.014 ± 0.005, and 0.991 ± 0.013, respectively. The transition state for the hydronium ion reaction is late with respect to both C–F bond cleavage and proton transfer.


2005 ◽  
Vol 83 (9) ◽  
pp. 1510-1515
Author(s):  
John E Baldwin ◽  
Stephanie R Singer

The gas-phase thermal isomerizations of deuteriocyclopropane to the four possible monodeuterium-labeled propenes have been followed at 435 °C. The observed distribution of products provides estimates of two deuterium kinetic isotope effects, the secondary [Formula: see text] for the carbon–carbon bond cleavage leading to trimethylene diradical reactive intermediates and the primary [Formula: see text] ratio for a [1,2] shift of a hydrogen or deuterium leading from the diradical to a labeled propene. The values determined are [Formula: see text] = 1.09 ± 0.03 and [Formula: see text] = 1.55 ± 0.06. The experimental [Formula: see text] value found agrees well with some, but not all, earlier calculated values and conjectures. Key words: cyclopropane, thermal rearrangement, kinetic isotope effects.


Chemosphere ◽  
2018 ◽  
Vol 193 ◽  
pp. 17-23 ◽  
Author(s):  
Rabindra Nath Manna ◽  
Anna Grzybkowska ◽  
Faina Gelman ◽  
Agnieszka Dybala-Defratyka

2001 ◽  
Vol 355 (3) ◽  
pp. 835-840 ◽  
Author(s):  
Yaw-Kuen LI ◽  
Jiunly CHIR ◽  
Fong-Yi CHEN

A family 3 β-glucosidase (EC 3.2.1.21) from Flavobacterium meningosepticum has been cloned and overexpressed. The mechanistic action of the enzyme was probed by NMR spectroscopy and kinetic investigations, including substrate reactivity, secondary kinetic isotope effects and inhibition studies. The stereochemistry of enzymic hydrolysis was identified as occurring with the retention of an anomeric configuration, indicating a double-displacement reaction. Based on the kcat values with a series of aryl glucosides, a Bronsted plot with a concave-downward shape was constructed. This biphasic behaviour is consistent with a two-step mechanism involving the formation and breakdown of a glucosyl–enzyme intermediate. The large Bronsted constant (β =-0.85) for the leaving-group-dependent portion (pKa of leaving phenols > 7) indicates substantial bond cleavage at the transition state. Secondary deuterium kinetic isotope effects with 2,4-dinitrophenyl β-D-glucopyanoside, o-nitrophenyl β-D-glucopyanoside and p-cyanophenyl β-D-glucopyanoside as substrates were 1.17±0.02, 1.19±0.02 and 1.04±0.02 respectively. These results support an SN1-like mechanism for the deglucosylation step and an SN2-like mechanism for the glucosylation step. Site-directed mutagenesis was also performed to study essential amino acid residues. The activities (kcat/Km) of the D247G and D247N mutants were 30000- and 200000-fold lower respectively than that of the wild-type enzyme, whereas the D247E mutant retained 20% of wild-type activity. These results indicate that Asp-247 is an essential amino acid. It is likely that this residue functions as a nucleophile in the reaction. This conclusion is supported by the kinetics of the irreversible inactivation of the wild-type enzyme by conduritol-B-epoxide, compared with the much slower inhibition of the D247E mutant and the lack of irreversible inhibition of the D247G mutant.


Sign in / Sign up

Export Citation Format

Share Document