scholarly journals Monovalent Nickel-Mediated Radical Formation: A Concerted Halogen-Atom Dissociation Pathway Determined by Electroanalytical Studies

Author(s):  
Qiao Lin ◽  
Yue Fu ◽  
Peng Liu ◽  
Tianning Diao
2019 ◽  
Author(s):  
Łukasz Ciszewski ◽  
Jakub Durka ◽  
Dorota Gryko

This article describes direct photoalkylation of electron-rich aromatic compounds with diazo compoiunds. C-2 alkylated indoles and pyrroles are obtained with good yields even though the photocatalyst (Ru(bpy)3Cl2) loading is as low as 0.075 mol %. For substrates bearing electron-withdrawing substituents the addition of a catalytic amount of N,N-dimethyl-4-methoxyaniline is required. Both EWG-EWG and EWG-EDG substituted diazo esters are suitable as alkylating agents. The reaction selectivity and mechanistic experiments suggest that carbenes/carbenoid intermediates are not involved in the reaction pathway, instead radical formation is proposed.


2019 ◽  
Author(s):  
Benjamin Lipp ◽  
Lisa Marie Kammer ◽  
Murat Kucukdisli ◽  
Adriana Luque ◽  
Jonas Kühlborn ◽  
...  

Simultaneous sulfonylation/arylation of styrene derivatives is achieved in a photoredox-catalyzed three-component reaction using visible light. A broad variety of difunctionalized products is accessible in mostly excellent yields and high diastereoselectivity. The developed reaction is scalable and suitable for the modification of styrene-functionalized biomolecules. Mechanistic investigations suggest the transformation to be operating through a designed sequence of radical formation and radical combination.<br>


1989 ◽  
Vol 24 (2) ◽  
pp. 299-322 ◽  
Author(s):  
R. M. Baxter

Abstract It is generally recognized that reductive processes are more important than oxidative ones in transforming, degrading and mineralizing many environmental contaminants. One process of particular importance is reductive dehalogenation, i.e., the replacement of a halogen atom (most commonly a chlorine atom) by a hydrogen atom. A number of different mechanisms are involved in these reactions. Photochemical reactions probably play a role in some instances. Aliphatic compounds such as chloroethanes, partly aliphatic compounds such as DDT, and alicyclic compounds such as hexachlorocyclohexane are readily dechlorinated in the laboratory by reaction with reduced iron porphyrins such as hematin. Many of these are also dechlorinated by cultures of certain microorganisms, probably by the same mechanism. Such compounds, with a few exceptions, have been found to undergo reductive dechlorination in the environment. Aromatic compounds such as halobenzenes, halophenols and halobenzoic acids appear not to react with reduced iron porphyrins. Some of these however undergo reductive dechlorination both in the environment and in the laboratory. The reaction is generally associated with methanogenic bacteria. There is evidence for the existence of a number of different dechlorinating enzymes specific for different isomers. Recently it has been found that many components of polychlorinated biphenyls (PCBs), long considered to be virtually totally resistant to environmental degradation, may be reductively dechlorinated both in the laboratory and in nature. These findings suggest that many environmental contaminants may prove to be less persistent than was previously feared.


1990 ◽  
Vol 277 (2) ◽  
pp. 402-409 ◽  
Author(s):  
Kirk R. Maples ◽  
Christopher H. Kennedy ◽  
Sandra J. Jordan ◽  
Ronald P. Mason

1988 ◽  
Vol 263 (23) ◽  
pp. 11296-11301 ◽  
Author(s):  
P K Wong ◽  
J L Poyer ◽  
C M DuBose ◽  
R A Floyd

Sign in / Sign up

Export Citation Format

Share Document