alkylating agents
Recently Published Documents


TOTAL DOCUMENTS

2654
(FIVE YEARS 274)

H-INDEX

108
(FIVE YEARS 11)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 151
Author(s):  
Kenta Nagahori ◽  
Ning Qu ◽  
Miyuki Kuramasu ◽  
Yuki Ogawa ◽  
Daisuke Kiyoshima ◽  
...  

Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11,Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin,ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 146
Author(s):  
Kenta Nagahori ◽  
Ning Qu ◽  
Miyuki Kuramasu ◽  
Yuki Ogawa ◽  
Daisuke Kiyoshima ◽  
...  

Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11, Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin, ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Mirja Nurmio ◽  
Babak Asadi-Azarbaijani ◽  
Mi Hou ◽  
Ronja Kiviö ◽  
Jorma Toppari ◽  
...  

Purpose and methods: To elucidate whether previous cancer treatment affects graft recovery and follicle numbers, morphology, and development in grafts, cryopreserved ovarian biopsies obtained from 18 cancer patients aged 1–24 years with and without exposure to chemotherapy were xenografted as 1 mm3 fragments to immunodeficient mice for 22 weeks with exogenous stimulation. Results: Graft recovery showed no association with chemotherapy exposure, pubertal stage, or leukemia contamination. Total follicle number per recovered graft varied between 0 and 1031 in the chemotherapy-exposed and between 0 and 502 in the non-chemotherapy-exposed group. Atretic follicles formed the largest proportion of the follicle pool in chemotherapy-exposed grafts. Increased atresia correlated with exposure to alkylating agents (mean ± SD 8866.2 ± 9316.3 mg/m2) but not with anthracyclines, pubertal stage, or leukemia contamination. Conclusion: The observation confirms the harmful effects of alkylating agents on ovarian tissue. Therapy at the median cumulative dose of 8866 mg/m2 leads to the decreased quality of cryopreserved ovarian follicles in children and young adults. 


2022 ◽  
Vol 12 ◽  
Author(s):  
Wenjing Zhang ◽  
Yujia Kong ◽  
Yuting Li ◽  
Fuyan Shi ◽  
Juncheng Lyu ◽  
...  

BackgroundImmune checkpoint inhibitor (ICI) therapy dramatically prolongs melanoma survival. Currently, the identified ICI markers are sometimes ineffective. The objective of this study was to identify novel determinants of ICI efficacy.MethodsWe comprehensively curated pretreatment somatic mutational profiles and clinical information from 631 melanoma patients who received blockade therapy of immune checkpoints (i.e., CTLA-4, PD-1/PD-L1, or a combination). Significantly mutated genes (SMGs), mutational signatures, and potential molecular subtypes were determined. Their association with ICI responses was assessed simultaneously.ResultsWe identified 27 SMGs, including four novel SMGs (COL3A1, NRAS, NARS2, and DCC) that are associated with ICI efficacy and well-known driver genes. COL3A1 mutations were associated with improved ICI overall survival (hazard ratio (HR): 0.64, 95% CI: 0.45–0.91, p = 0.012), whereas immune resistance was observed in patients with NRAS mutations (HR: 1.42, 95% CI: 1.10–1.82, p = 0.006). The presence of the tobacco smoking-related signature was significantly correlated with inferior prognoses (HR: 1.42, 95% CI: 1.11–1.82, p = 0.005). In addition, the signature resembling that of alkylating agents and a newly discovered signature both exhibited extended prognoses (both HR < 1, p < 0.05). Based on the activities of the extracted 6 mutational signatures, we identified one immune subtype that was significantly associated with better ICI outcomes (HR: 0.44, 95% CI: 0.23–0.87, p = 0.017).ConclusionWe uncovered several novel SMGs and re-annotated mutational signatures that are linked to immunotherapy response or resistance. In addition, an immune subtype was found to exhibit favorable prognoses. Further studies are required to validate these findings.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 145
Author(s):  
Giampiero Ferraguti ◽  
Sergio Terracina ◽  
Carla Petrella ◽  
Antonio Greco ◽  
Antonio Minni ◽  
...  

Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells’ growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Shana R. Mencher ◽  
William V. Tamborlane ◽  
Anisha D. Patel

Background. Griscelli syndrome (GS) is a rare disorder characterized by partial albinism and silver hair with alteration in genes necessary for melanin transport. Type 2 GS is fatal due to severe immunodeficiency without curative stem cell transplant (SCT). Late endocrinopathies are quite common in other disorders after SCT. These complications have not been reported in GS. Case Presentation. A 7-year-old female presented for growth failure with a history of GS status post curative SCT and consequently developed graft-versus-host disease (GvHD). She also had a history of eosinophilic enterocolitis, for which she was taking supraphysiologic glucocorticoids for the past year. She presented with severe short stature along with mild hyperthyroxinemia with subsequent diagnosis of Graves’ disease, which was treated with methimazole. GH therapy was commenced due to persistent growth failure, with a robust increase in growth parameters. She started spontaneous puberty; however, initial biochemical evaluation revealed hypergonadotropic hypogonadism with undetectable anti-Mullerian hormone (AMH) consistent with low ovarian reserve and premature ovarian failure. Discussion. Growth failure was multifactorial due to her inflammatory condition and poor weight gain from multiple underlying illnesses, including hyperthyroidism, as well as chronic supraphysiologic glucocorticoid use. Although hypothyroidism is more commonly seen after SCT, rare cases of hyperthyroidism have been reported. In addition to SCTs, GvHD and GS have been associated with autoimmune conditions. It is important to monitor pubertal progression as the majority of those treated with alkylating agents prior to SCT have pubertal and ovarian failure and remain at risk for premature menopause.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6385
Author(s):  
Clifford M. Csizmar ◽  
Antoine N. Saliba ◽  
Elizabeth M. Swisher ◽  
Scott H. Kaufmann

Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.


2021 ◽  
Author(s):  
Mingming Yang ◽  
Chenliang Wang ◽  
Mi Zhou ◽  
Lei Bao ◽  
Yanan Wang ◽  
...  

Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key cell death effector in PARthanatos. Knockout of KDM6B or loss of KDM6B demethylase activity conferred cancer cells resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Khalil Ben Hassine ◽  
Madeleine Powys ◽  
Peter Svec ◽  
Miroslava Pozdechova ◽  
Birgitta Versluys ◽  
...  

Total-body irradiation (TBI) based conditioning prior to allogeneic hematopoietic stem cell transplantation (HSCT) is generally regarded as the gold-standard for children >4 years of age with acute lymphoblastic leukaemia (ALL). Retrospective studies in the 1990's suggested better survival with irradiation, confirmed in a small randomised, prospective study in the early 2000's. Most recently, this was reconfirmed by the early results of the large, randomised, international, phase III FORUM study published in 2020. But we know survivors will suffer a multitude of long-term sequelae after TBI, including second malignancies, neurocognitive, endocrine and cardiometabolic effects. The drive to avoid TBI directs us to continue optimising irradiation-free, myeloablative conditioning. In chemotherapy-based conditioning, the dominant myeloablative effect is provided by the alkylating agents, most commonly busulfan or treosulfan. Busulfan with cyclophosphamide is a long-established alternative to TBI-based conditioning in ALL patients. Substituting fludarabine for cyclophosphamide reduces toxicity, but may not be as effective, prompting the addition of a third agent, such as thiotepa, melphalan, and now clofarabine. For busulfan, it's wide pharmacokinetic (PK) variability and narrow therapeutic window is well-known, with widespread use of therapeutic drug monitoring (TDM) to individualise dosing and control the cumulative busulfan exposure. The development of first-dose selection algorithms has helped achieve early, accurate busulfan levels within the targeted therapeutic window. In the future, predictive genetic variants, associated with differing busulfan exposures and toxicities, could be employed to further tailor individualised busulfan-based conditioning for ALL patients. Treosulfan-based conditioning leads to comparable outcomes to busulfan-based conditioning in paediatric ALL, without the need for TDM to date. Future PK evaluation and modelling may optimise therapy and improve outcome. More recently, the addition of clofarabine to busulfan/fludarabine has shown encouraging results when compared to TBI-based regimens. The combination shows activity in ALL as well as AML and deserves further evaluation. Like busulfan, optimization of chemotherapy conditioning may be enhanced by understanding not just the PK of clofarabine, fludarabine, treosulfan and other agents, but also the pharmacodynamics and pharmacogenetics, ideally in the context of a single disease such as ALL.


2021 ◽  
Author(s):  
Aaron Pan ◽  
Maja Chojnacka ◽  
Robert Crowley ◽  
Lucas Gottemann ◽  
Brandon Haines ◽  
...  

Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-butylation of electron-rich arenes using di-tert-butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel–Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel–Crafts reactivity.


Sign in / Sign up

Export Citation Format

Share Document