scholarly journals Correction to “Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression”

Author(s):  
Martin Rahm ◽  
Roberto Cammi ◽  
N. W. Ashcroft ◽  
Roald Hoffmann
2021 ◽  
Author(s):  
Toshihiro Konishi ◽  
Ryosuke Miura

Abstract The current periodic table does not necessarily have a clear position for transition elements. Therefore, the purpose of this paper is to use the basic principle discovered by Mendeleev as it is and to create a periodic ta ble with consistency for transition elements. By setting some hypotheses, it was found that transition elements also have regular periodicity, so we succeeded in clarifying the energy level of electrons in each orbit. In addition, by utilizing its periodic ity, the electron configuration for each orbit was predicted for unknown elements. In this paper, we did not take the conventional idea of electron orbitals, that is, the idea of forming a hybrid orbital, but assumed a new orbital.Since the state in which electrons fit in orbits and stabilize is defined as an octet, this idea was used as the basic principle in this paper, but the hypothesis that "there are only three orbits in each shell" was established and verified.The calculatio n of the energy level of the electrons on the orbit became extremely easy, and the order of each orbit could be clarified. It was also found that the three dimensional structure of the molecule may be visualizedby paying attention to the valence electrons of the outermost shell of the element and the octet of the stability condition. Therefore, in this paper, by slightly expanding the structural formula of Kekulé, it became possible to easily determine whether or not the molecule synthesized by the became possible to easily determine whether or not the molecule synthesized by the bond bebond between elements is stable.tween elements is stable. In addition, it has become possible to predict the three In addition, it has become possible to predict the three--dimensional structure of the dimensional structure of the molecule as well.molecule as well. Furthermore, not only will it be easier for students studying chemistry to understand Furthermore, not only will it be easier for students studying chemistry to understand complex chemical reactions, but it will complex chemical reactions, but it will also be useful for researchers in the development also be useful for researchers in the development and research of new drugs.and research of new drugs.


The current periodic table does not necessarily have a clear position for transition elements. Therefore, the purpose of this paper is to use the basic principle discovered by Mendeleev as it is and to create a periodic table with consistency for transition elements. By setting some hypotheses, it was found that transition elements also have regular periodicity, so we succeeded in clarifying the energy level of electrons in each orbit. In addition, by utilizing its periodicity, the electron configuration for each orbit was predicted for unknown elements. In this paper, we did not take the conventional idea of electron orbitals, that is, the idea of forming a hybrid orbital, but assumed a new orbital. Since the state in which electrons fit in orbits and stabilize is defined as an octet, this idea was used as the basic principle in this paper, but the hypothesis that "there are only three orbits in each shell" was established and verified. The calculation of the energy level of the electrons on the orbit became extremely easy, and the order of each orbit could be clarified. It was also found that the three-dimensional structure of the molecule may be visualized by paying attention to the valence electrons of the outermost shell of the element and the octet of the stability condition. Therefore, in this paper, by slightly expanding the structural formula of Kekulé, it became possible to easily determine whether or not the molecule synthesized by the bond between elements is stable. In addition, it has become possible to predict the three-dimensional structure of the molecule as well. Furthermore, not only will it be easier for students studying chemistry to understand complex chemical reactions, but it will also be useful for researchers in the development and research of new drugs.


Author(s):  
Eric R. Scerri

The periodic table of elements provides an arrangement of the chemical elements, ordered by their atomic number, electron configuration, and recurring chemical properties. The Periodic Table: A Very Short Introduction considers what led to the table’s construction and shows how the deeper meaning of its structure gradually became apparent with the development of atomic theory and quantum mechanics, which underlies the behaviour of all of the elements and their compounds. This new edition celebrates the completion of the seventh period of the table, with the ratification and naming of elements 113, 115, 117, and 118 as nihonium, moscovium, tennessine, and oganesson, and incorporates recent advances in our understanding of the origin of the elements.


2021 ◽  
Vol 1893 (1) ◽  
pp. 012003
Author(s):  
Y B Peng ◽  
T Lei ◽  
H T Zhen ◽  
Z X Yuan ◽  
H Xu ◽  
...  

2019 ◽  
Vol 141 (26) ◽  
pp. 10253-10271 ◽  
Author(s):  
Martin Rahm ◽  
Roberto Cammi ◽  
N. W. Ashcroft ◽  
Roald Hoffmann

Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


Sign in / Sign up

Export Citation Format

Share Document