scholarly journals On the Regularity of the Electron Configuration of Atoms in the Periodic Table

Author(s):  
Toshihiro Konishi ◽  
Ryosuke Miura

Abstract The current periodic table does not necessarily have a clear position for transition elements. Therefore, the purpose of this paper is to use the basic principle discovered by Mendeleev as it is and to create a periodic ta ble with consistency for transition elements. By setting some hypotheses, it was found that transition elements also have regular periodicity, so we succeeded in clarifying the energy level of electrons in each orbit. In addition, by utilizing its periodic ity, the electron configuration for each orbit was predicted for unknown elements. In this paper, we did not take the conventional idea of electron orbitals, that is, the idea of forming a hybrid orbital, but assumed a new orbital.Since the state in which electrons fit in orbits and stabilize is defined as an octet, this idea was used as the basic principle in this paper, but the hypothesis that "there are only three orbits in each shell" was established and verified.The calculatio n of the energy level of the electrons on the orbit became extremely easy, and the order of each orbit could be clarified. It was also found that the three dimensional structure of the molecule may be visualizedby paying attention to the valence electrons of the outermost shell of the element and the octet of the stability condition. Therefore, in this paper, by slightly expanding the structural formula of Kekulé, it became possible to easily determine whether or not the molecule synthesized by the became possible to easily determine whether or not the molecule synthesized by the bond bebond between elements is stable.tween elements is stable. In addition, it has become possible to predict the three In addition, it has become possible to predict the three--dimensional structure of the dimensional structure of the molecule as well.molecule as well. Furthermore, not only will it be easier for students studying chemistry to understand Furthermore, not only will it be easier for students studying chemistry to understand complex chemical reactions, but it will complex chemical reactions, but it will also be useful for researchers in the development also be useful for researchers in the development and research of new drugs.and research of new drugs.

The current periodic table does not necessarily have a clear position for transition elements. Therefore, the purpose of this paper is to use the basic principle discovered by Mendeleev as it is and to create a periodic table with consistency for transition elements. By setting some hypotheses, it was found that transition elements also have regular periodicity, so we succeeded in clarifying the energy level of electrons in each orbit. In addition, by utilizing its periodicity, the electron configuration for each orbit was predicted for unknown elements. In this paper, we did not take the conventional idea of electron orbitals, that is, the idea of forming a hybrid orbital, but assumed a new orbital. Since the state in which electrons fit in orbits and stabilize is defined as an octet, this idea was used as the basic principle in this paper, but the hypothesis that "there are only three orbits in each shell" was established and verified. The calculation of the energy level of the electrons on the orbit became extremely easy, and the order of each orbit could be clarified. It was also found that the three-dimensional structure of the molecule may be visualized by paying attention to the valence electrons of the outermost shell of the element and the octet of the stability condition. Therefore, in this paper, by slightly expanding the structural formula of Kekulé, it became possible to easily determine whether or not the molecule synthesized by the bond between elements is stable. In addition, it has become possible to predict the three-dimensional structure of the molecule as well. Furthermore, not only will it be easier for students studying chemistry to understand complex chemical reactions, but it will also be useful for researchers in the development and research of new drugs.


2018 ◽  
Vol 218 ◽  
pp. 04012
Author(s):  
Finsa Nurpandi ◽  
Agung Gumelar

One of chemistry is the chemical element that is represented by the symbol on the periodic table. The low level of activity, interest, and the result of chemistry learning in school is caused by the students generally having difficulty in solving problems related to chemical reactions. In addition, most of the chemical concepts are abstract so it is difficult to imagine the structure of molecules clearly. Augmented Reality can integrate digital elements with the real world in real time and follow the circumstances surrounding environment. Augmented Reality can provide a new more interactive concept in the learning process because users can directly interact naturally. By using Augmented Reality, the atoms in the periodic table will be scanned using a camera from an Android-based smartphone that has installed this app. The scan results are then compared with existing data and will show the molecular structure in three-dimensional form. Users can also observe reactions between atoms by combining multiple markers simultaneously. Augmented Reality application is built using the concept of user-centered design and Unity with personal license as development tools. By using this app, studying chemical reactions no longer requires a variety of chemicals that could be harmful to users.


1972 ◽  
Vol 27 (2) ◽  
pp. 247-255 ◽  
Author(s):  
K. Onda ◽  
E. Sada ◽  
T. Kobayashi ◽  
M. Fujine

Sign in / Sign up

Export Citation Format

Share Document