The Periodic Table: A Very Short Introduction

Author(s):  
Eric R. Scerri

The periodic table of elements provides an arrangement of the chemical elements, ordered by their atomic number, electron configuration, and recurring chemical properties. The Periodic Table: A Very Short Introduction considers what led to the table’s construction and shows how the deeper meaning of its structure gradually became apparent with the development of atomic theory and quantum mechanics, which underlies the behaviour of all of the elements and their compounds. This new edition celebrates the completion of the seventh period of the table, with the ratification and naming of elements 113, 115, 117, and 118 as nihonium, moscovium, tennessine, and oganesson, and incorporates recent advances in our understanding of the origin of the elements.

Author(s):  
Paul J. Karol

Uranium was Discovered in 1789 by the German chemist Martin Heinrich Klaproth in pitchblende ore from Joachimsthal, a town now in the Czech Republic. Nearly a century later, the Russian chemist Dmitri Mendeleev placed uranium at the end of his periodic table of the chemical elements. A century ago, Moseley used x-ray spectroscopy to set the atomic number of uranium at 92, making it the heaviest element known at the time. This chapter will deal with the quest to explore that limit and heavy and superheavy elements, and provide an update on where continuation of the periodic table is headed and some of the significant changes in its appearance and interpretation that may be necessary. Our use of the term “heavy elements” differs from that of astrophysicists who refer to elements above helium as heavy elements. The meaning of the term “superheavy” element is still not exactly agreed upon and has changed over the past several decades. “Ultraheavy” is occasionally used. Interestingly, there is no formal definition of “periodic table” by the International Union of Pure and Applied Chemistry (IUPAC) in their glossary of definitions: the “Gold Book.” But there are plenty of definitions in the general literature—including Wikipedia, the collaborative, free, internet encyclopedia which calls the “periodic table” a “tabular arrangement of the chemical elements, organized on the basis of their atomic numbers, electron configurations (electron shell model), and recurring chemical properties. Elements are presented in order of increasing atomic number (the number of protons in the nucleus).” IUPAC’s first definition of a “chemical element” is: “A species of atoms; all atoms with the same number of protons in the atomic nucleus.” Their definition of atom: “the smallest particle still characterizing a chemical element. It consists of a nucleus of positive charge (Z is the proton number and e the elementary charge) carrying almost all its mass (more than 99.9%) and Z electrons determining its size.”


Author(s):  
Eric R. Scerri

‘A quick overview of the modern periodic table’ explains the arrangement of elements in the periodic table, and introduces the concept of periodic law. Elements were originally ordered by their equivalent weight, but this was superseded by atomic weight, and then atomic number. There are many versions of the periodic table, but all obey periodic law, which states that after certain regular, but varying intervals, the chemical elements show an approximate repetition in their properties. Developments in physics, especially quantum mechanics and relativity, have changed the way we think about elements and periodicity. The number of known elements has increased to 118 as the result of the synthesis of artificial elements.


2011 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D.C. Hoffman

AbstractThis year (2009) marks the 140th Anniversary of Mendeleev's original 1869 periodic table of the elements based on atomic weights. It also marks the 175th anniversary of his birth in Tolbosk, Siberia. The history of the development of periodic tables of the chemical elements is briefly reviewed beginning with the presentation by Dmitri Mendeleev and his associate Nikolai Menshutkin of their original 1869 table based on atomic weights. The value, as well as the sometimes negative effects, of periodic tables in guiding the discovery of new elements based on their predicted chemical properties is assessed. It is noteworthy that the element with Z=101 (mendelevium) was identified in 1955 using chemical techniques. The discoverers proposed the name mendelevium to honor the predictive power of the Mendeleev Periodic Table. Mendelevium still remains the heaviest element to have been identified first by chemical rather than nuclear or physical techniques. The question concerning whether there will be a future role for the current form of the periodic table in predicting chemical properties and aid in the identification of elements beyond those currently known is considered.


Author(s):  
Eric Scerri

In chapter 7, the influence of the old quantum theory on the periodic system was considered. Although the development of this theory provided a way of reexpressing the periodic table in terms of the number of outer-shell electrons, it did not yield anything essentially new to the understanding of chemistry. Indeed, in several cases, chemists such as Irving Langmuir, J.D. Main Smith, and Charles Bury were able to go further than physicists in assigning electronic configurations, as described in chapter 8, because they were more familiar with the chemical properties of individual elements. Moreover, despite the rhetoric in favor of quantum mechanics that was propagated by Niels Bohr and others, the discovery that hafnium was a transition metal and not a rare earth was not made deductively from the quantum theory. It was essentially a chemical fact that was accommodated in terms of the quantum mechanical understanding of the periodic table. The old quantum theory was quantitatively impotent in the context of the periodic table since it was not possible to even set up the necessary equations to begin to obtain solutions for the atoms with more than one electron. An explanation could be given for the periodic table in terms of numbers of electrons in the outer shells of atoms, but generally only after the fact. But when it came to trying to predict quantitative aspects of atoms, such as the ground-state energy of the helium atom, the old quantum theory was quite hopeless. As one physicist stated, “We should not be surprised . . . even the astronomers have not yet satisfactorily solved the three-body problem in spite of efforts over the centuries.” A succession of the best minds in physics, including Hendrik Kramers, Werner Heisenberg, and Arnold Sommerfeld, made strenuous attempts to calculate the spectrum of helium but to no avail. It was only following the introduction of the Pauli exclusion principle and the development of the new quantum mechanics that Heisenberg succeeded where everyone else had failed.


2019 ◽  
pp. 46-53
Author(s):  
Nicholas Mee

The emission and absorption of light by atoms produces discrete sets of spectral lines that were a vital clue to unravelling the structure of atoms and their elucidation was an important step towards the development of quantum mechanics. In the middle years of the nineteenth century Bunsen and Kirchhoff discovered that spectral lines can be used to determine the chemical composition of stars. Following Rutherford’s discovery of the nucleus, Bohr devised a model of the hydrogen atom that explained the spectral lines that it produces. His work was developed further by Pauli, who postulated the exclusion principle in order to explain the structure of other types of atom. This enabled him to explain the layout of the Periodic Table and the chemical properties of the elements.


2021 ◽  
Vol 8 ◽  
Author(s):  
Changsu Cao ◽  
René E. Vernon ◽  
W. H. Eugen Schwarz ◽  
Jun Li

The chemical elements are the “conserved principles” or “kernels” of chemistry that are retained when substances are altered. Comprehensive overviews of the chemistry of the elements and their compounds are needed in chemical science. To this end, a graphical display of the chemical properties of the elements, in the form of a Periodic Table, is the helpful tool. Such tables have been designed with the aim of either classifying real chemical substances or emphasizing formal and aesthetic concepts. Simplified, artistic, or economic tables are relevant to educational and cultural fields, while practicing chemists profit more from “chemical tables of chemical elements.” Such tables should incorporate four aspects: (i) typical valence electron configurations of bonded atoms in chemical compounds (instead of the common but chemically atypical ground states of free atoms in physical vacuum); (ii) at least three basic chemical properties (valence number, size, and energy of the valence shells), their joint variation across the elements showing principal and secondary periodicity; (iii) elements in which the (sp)8, (d)10, and (f)14valence shells become closed and inert under ambient chemical conditions, thereby determining the “fix-points” of chemical periodicity; (iv)peculiar elements at the top and at the bottom of the Periodic Table. While it is essential that Periodic Tables display important trends in element chemistry we need to keep our eyes open for unexpected chemical behavior in ambient, near ambient, or unusual conditions. The combination of experimental data and theoretical insight supports a more nuanced understanding of complex periodic trends and non-periodic phenomena.


Author(s):  
Robert E. Criss

The discovery of isotopes is best understood in the context of the spectacular advances in physics and chemistry that transpired during the last 200 years. Around the year 1800, compounds and elements had been distinguished. About 39 elements were recognized, and discoveries of new elements were occurring rapidly. At about this time, the chemist John Dalton revived the ancient idea of the atom, a word derived from the Greek “atomos,” which literally means “indivisible.” According to Dalton’s theory, all matter is made of atoms which are immutable and which cannot be further subdivided. Moreover, Dalton argued that all atoms of a given element are identical in all respects, including mass, but that atoms of different elements have different masses. Even today, Dalton’s atomic theory would be accepted by a casual reader, yet later developments have shown that it is erroneous in almost every one of its key aspects. Nevertheless, Dalton’s concept of the atom was a great advance, and, with it, he not only produced the first table of atomic weights, but also generated the concept that compounds comprise elements combined in definite proportions. His theory laid the groundwork for many other important advances in early nineteenth-century chemistry, including Avogadro’s 1811 hypothesis that equal volumes of gas contain equal numbers of particles, and Prout’s 1815 hypothesis that the atomic weights of the elements are integral multiples of the weight of hydrogen. By 1870, approximately 65 elements had been identified. In that year, Mendeleev codified much of the available chemical knowledge in his “periodic table,” which basically portrayed the relationships between the chemical properties of the elements and their atomic weights. The regularities that Mendeleev found directly lead to the discovery of several “new” elements—for example, Sc, Ga, Ge, and Hf—that filled vacancies in his table and confirmed his predictions of their chemical properties and atomic weights. Similarly, shortly after Rayleigh and Ramsay isolated Ar from air in 1894, the element He was isolated from uranium minerals in 1895; the elements Ne, Kr, and Xe were found in air in 1898; and Rn was discovered in 1900.


2019 ◽  
Vol 41 (4) ◽  
pp. 20-22
Author(s):  
Michael Droescher

Abstract There are many ways to look at the periodic table. When Mendeleev established the table, he arranged the elements according to atomic number and chemical properties. Here, we try a different look. We discuss the influence and links of elements on the development of cultures and technologies. Some of the elements have a direct impact on our life: carbon, nitrogen, hydrogen, oxygen and phosphorous are the main building blocks of our organism, besides small amounts of other elements. Many other elements, especially metals, are the base of the development of our social and technological world, due to the availability and/or innovative use of new or already known elements. We will have a look on the relevance and importance of these elements for the development of technologies over the last 10 millennia.


2019 ◽  
Vol 91 (12) ◽  
pp. 1921-1928 ◽  
Author(s):  
Mikhail Kurushkin

Abstract The history of chemistry has not once seen representations of the periodic system that have not received proper attention or recognition. The present paper is dedicated to a nearly unknown version of the periodic table published on the occasion of the centenary celebration of Mendeleev’s birth (1934) by V. Romanoff. His periodic table visually merges Werner’s and Janet’s periodic tables and it is essentially the spiral periodic system on a plane. In his 1934 paper, Romanoff was the first one to introduce the idea of the actinide series, a decade before Glenn T. Seaborg, the renowned creator of the actinide concept. As a consequence, another most outstanding thing about Romanoff’s paper occurs towards its very end: he essentially predicted the discovery of elements #106, #111 and #118. He theorized that, had uranium not been the “creative limit”, we would have met element #106, a “legal” member of group 6, element #111, a precious metal, “super-gold” and element #118, a noble gas. In 2019, we take it for granted that elements #106, #111 and #118 indeed exist and they are best known as seaborgium, roentgenium and oganesson. It is fair to say that Romanoff’s success with the prediction of correct placement and chemical properties of seaborgium, roentgenium and oganesson was only made possible due to the introduction of an early version of the actinide series that only had four elements at that time. Sadly, while Professor Romanoff was imprisoned (1938–1943), two new elements, neptunium (element #93) and plutonium (element #94) were discovered. While Professor Romanoff was in exile in Ufa (1943–1953), six further elements were added to the periodic table: americium (element #95), curium (element #96), berkelium (element #97), californium (element #98), einsteinium (element #99) and fermium (element #100). The next year after his death, in 1955, mendelevium (element #101), was discovered. Romanoff’s version of the periodic table is an unparalleled precursor to the contemporary periodic table, and is an example of extraordinary anticipation of the discovery of new chemical elements.


2019 ◽  
Vol 91 (12) ◽  
pp. 1969-1999 ◽  
Author(s):  
Chang-Su Cao ◽  
Han-Shi Hu ◽  
Jun Li ◽  
W. H. Eugen Schwarz

AbstractThe Periodic Law, one of the great discoveries in human history, is magnificent in the art of chemistry. Different arrangements of chemical elements in differently shaped Periodic Tables serve for different purposes. “Can this Periodic Table be derived from quantum chemistry or physics?” can only be answered positively, if theinternalstructure of the Periodic Table is explicitly connected to facts and data from chemistry. Quantum chemical rationalization of such a Periodic Tables is achieved by explaining the details ofenergies and radiiof atomiccore and valenceorbitals in theleadingelectron configurations of chemicallybondedatoms. The coarse horizontal pseudo-periodicity in seven rows of 2, 8, 8, 18, 18, 32, 32 members is triggered by the low energy of and large gap above the 1s andnsp valence shells (2 ≤ n ≤ 6 !). The pseudo-periodicity, in particular the wavy variation of the elemental properties in the four longer rows, is due to the different behaviors of the s and p vs. d and f pairs of atomic valence shells along the ordered array of elements. The so-called secondary or vertical periodicity is related to pseudo-periodic changes of the atomic core shells. The Periodic Law of the naturally given System of Elements describes the trends of the many chemical properties displayedinsidethe Chemical Periodic Tables. While the general physical laws of quantum mechanics form a simple network, their application to the unlimited field of chemical materials under ambient ‘human’ conditions results in a complex and somewhat accidental structureinsidethe Table that fits to some more or less symmetricoutershape. Periodic Tables designed after some creative concept for the overall appearance are of interest in non-chemical fields of wisdom and art.


Sign in / Sign up

Export Citation Format

Share Document