scholarly journals Suzuki−Miyaura Cross-Coupling Reactions of Benzyl Halides with Potassium Aryltrifluoroborates

2006 ◽  
Vol 71 (24) ◽  
pp. 9198-9202 ◽  
Author(s):  
Gary A. Molander ◽  
Maxwell D. Elia
2021 ◽  
Author(s):  
Anirban Mondal ◽  
Paco Visser ◽  
Anna M Doze ◽  
Jeffrey Buter ◽  
Ben L Feringa

Organolithium-based cross-coupling reactions have emerged as an indispensable method to construct C–C bonds. These transformations have proven particularly useful for the direct and fast coupling of various organolithium reagents (sp,...


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


Sign in / Sign up

Export Citation Format

Share Document