An Iron-Based Catalyst Enables The Enantioconvergent Synthesis of Chiral 1,1-Diarylalkanes Through a Suzuki-Miyaura Cross-Coupling Reaction

Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.

2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


Author(s):  
Jonathon Moir

Pharmaceuticals and drugs have become an indispensable part of human life. Presently, a myriad of different drugs are available for a variety of mental and physical health concersn. The synthesis of these drugs, however, remains an elusive and often difficult aspect of the industry. The importance of chirality, or "handedness", in the synthesis of natural products is paramount, as any given pair of enantiomers can have widely differing physiological effects. As such, the ability to control the enantioselectivity of a reaction is of the utmost importance. One example of a facile method used to form carbon-carbon bonds is the Suzuki-Miyaura cross-coupling reaction. Not only is this reaction effective at coupling primary organoboronic esters with organohalides, but recent work in the Crudden group in the Department of Chemistry has revealed an effective method of also cross-couplingchiral secondary organoboronic esters with good retention of stereochemistry. This work, the first of its kind, is crucial in developing single-handed natural products for a wide array of applications, including applications in the pharmaceutical industry. The end result is safer and more effective drugs for distribution to the general public. To expand the scope of this project, new substrates are currently being synthesized for cross-coupling applications. The overall goal is to improve upon current methodologies, while helping to meet the industrial and academic needs of the future.  


Synthesis ◽  
2020 ◽  
Vol 52 (16) ◽  
pp. 2387-2394 ◽  
Author(s):  
Jorge A. Cabezas ◽  
Natasha Ferllini

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.


Synthesis ◽  
2018 ◽  
Vol 50 (09) ◽  
pp. 1883-1890 ◽  
Author(s):  
Margus Lopp ◽  
Eleana Lopušanskaja ◽  
Anne Paju ◽  
Ivar Järving

A method for the synthesis of cyclic 3-aryl- and heteroaryl-substituted 1,2-dicarbonyl compounds with different ring sizes by using a Suzuki cross-coupling reaction between 3-halo-1,2-dicarbonyl compounds and arylboronic acids is developed. The 3-halo-1,2-dicarbonyl substrates are easily available from 1,2-dicarbonyl compounds. The method is versatile, affording good to high yields of the target compounds.


2018 ◽  
Vol 54 (32) ◽  
pp. 3993-3996 ◽  
Author(s):  
Yin-Na Zhao ◽  
Yong-Chun Luo ◽  
Zhu-Yin Wang ◽  
Peng-Fei Xu

A para-quinone methide and difluoroalkylating reagent involved radical cross-coupling reaction was described, through photocatalytically generated diarylmethane radical intermediates.


Synthesis ◽  
2021 ◽  
Author(s):  
Lorenzo Lombardi ◽  
Raffaello Mazzaro ◽  
Massimo Gazzano ◽  
Alessandro Kovtun ◽  
Vittorio Morandi ◽  
...  

A new type of ligand-free Ni-nanoparticles supported on rGO (size distribution average d = 9 ± 3 nm) is prepared and fully characterized via morphological (Fe-SEM), structural (P-XRD, HR-TEM) and spectroscopic (ICP-EOS, XPS) analysis tools. The metal composite was effectively employed in the unprecedented heterogeneously Ni-assisted cross-coupling reaction of aryl/vinyl iodides and thiocarboxylates. A range of sulphur-containing aryl as well as vinyl derivatives (15 examples) was achieved in high yields (up to 82%), mild reaction conditions and wide functional group tolerance.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1788
Author(s):  
S. N. Murthy Boddapati ◽  
Ramana Tamminana ◽  
Ravi Kumar Gollapudi ◽  
Sharmila Nurbasha ◽  
Mohamed E. Assal ◽  
...  

A facile, one-pot, and proficient method was developed for the production of various 2-arylaminobenzimidazoles. This methodology is based for the first time on a copper catalyst promoted domino C–N cross-coupling reaction for the generation of 2-arylaminobenzimidazoles. Mechanistic investigations revealed that the synthetic pathway involves a copper-based desulphurization/nucleophilic substitution and a subsequent domino intra and intermolecular C–N cross-coupling reactions. Some of the issues typically encountered during the synthesis of 2-arylaminobezimidazoles, including the use of expensive catalytic systems and the low reactivity of bromo precursors, were addressed using this newly developed copper-catalyzed method. The reaction procedure is simple, generally with excellent substrate tolerance, and provides good to high yields of the desired products.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 652 ◽  
Author(s):  
Monika Olesiejuk ◽  
Agnieszka Kudelko ◽  
Marcin Swiatkowski ◽  
Rafal Kruszynski

New derivatives of 4-alkyl-3,5-diaryl-4H-1,2,4-triazole were synthesized utilizing the Suzuki cross-coupling reaction. The presented methodology comprises of the preparation of bromine-containing 4-alkyl-4H-1,2,4-triazoles and their coupling with different commercially available boronic acids in the presence of ionic liquids or in conventional solvents. The obtained compounds were tested for their luminescence properties.


2017 ◽  
Vol 15 (27) ◽  
pp. 5805-5810 ◽  
Author(s):  
Yan Liu ◽  
Jia Yuan ◽  
Zi-Fei Wang ◽  
Si-Hao Zeng ◽  
Meng-Yue Gao ◽  
...  

An efficient solvent-free and aqueous protocol for the Buchwald–Hartwig cross-coupling reaction has been developed. Notably, the catalytic system also efficiently catalyzed the reaction under aqueous conditions.


2018 ◽  
Vol 16 (43) ◽  
pp. 8106-8114 ◽  
Author(s):  
Joffrey Pijeat ◽  
Yannick J. Dappe ◽  
Pierre Thuéry ◽  
Stéphane Campidelli

A tetra-bromoanthracenylporphyrin was synthesised and its reactivity was tested by post-synthetic modification using the Suzuki–Miyaura cross coupling reaction.


Sign in / Sign up

Export Citation Format

Share Document