Density Functional Theory (B3LYP) Study of Substituent Effects on O–H Bond Dissociation Enthalpies of trans-Resveratrol Derivatives and the Role of Intramolecular Hydrogen Bonds

2012 ◽  
Vol 77 (22) ◽  
pp. 10093-10104 ◽  
Author(s):  
Elyas Nazarparvar ◽  
Mansour Zahedi ◽  
Erik Klein
2021 ◽  
Author(s):  
Croix Laconsay ◽  
Tyler Rho ◽  
Dean Tantillo

Hyperconjugation/conjugation through-bond stereoelectronic effects were studied with density functional theory (DFT) in the context of 3-azabicyclo[3.3.1]nonanes to unravel puzzling differences in reactivity between a vinylogous chloride (4) and a vinylogous ester (5). These compounds—whose structures differ only by one substituent—were found to display strikingly different reactivities in hydrochloric acid by Risch and co-workers (J. Am. Chem. Soc. 1991, 113, 9411–9412). Computational analyses of substituent effects, noncovalent interactions, natural bond orbitals, isodesmic reactions, and hydration propensities lead to a model for which the role of remote, through-bond stereoelectronic effects is key to explaining 4 and 5’s diverging reactivity.


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Author(s):  
Mohammad Reza Poor Heravi ◽  
Sepideh Habibzadeh ◽  
Abdol Ghaffar Ebadi ◽  
Parvaneh Delir Kheirollahi Nezhad ◽  
Esmail Vessally

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 926
Author(s):  
Malose J. Mphahlele ◽  
Eugene E. Onwu ◽  
Marole M. Maluleka

The conformations of the title compounds were determined in solution (NMR and UV-Vis spectroscopy) and in the solid state (FT-IR and XRD), complemented with density functional theory (DFT) in the gas phase. The nonequivalence of the amide protons of these compounds due to the hindered rotation of the C(O)–NH2 single bond resulted in two distinct resonances of different chemical shift values in the aromatic region of their 1H-NMR spectra. Intramolecular hydrogen bonding interactions between the carbonyl oxygen and the sulfonamide hydrogen atom were observed in the solution phase and solid state. XRD confirmed the ability of the amide moiety of this class of compounds to function as a hydrogen bond acceptor to form a six-membered hydrogen bonded ring and a donor simultaneously to form intermolecular hydrogen bonded complexes of the type N–H···O=S. The distorted tetrahedral geometry of the sulfur atom resulted in a deviation of the sulfonamide moiety from co-planarity of the anthranilamide scaffold, and this geometry enabled oxygen atoms to form hydrogen bonds in higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document