Kinetics of OH Radical Reaction with Anthracene and Anthracene-d10

2006 ◽  
Vol 110 (10) ◽  
pp. 3559-3566 ◽  
Author(s):  
Rajeshwar Ananthula ◽  
Takahiro Yamada ◽  
Philip H. Taylor
2007 ◽  
Vol 39 (11) ◽  
pp. 629-637 ◽  
Author(s):  
Rajeshwar Ananthula ◽  
Takahiro Yamada ◽  
Philip H. Taylor

2001 ◽  
Vol 349 (3-4) ◽  
pp. 279-285 ◽  
Author(s):  
Hari P Upadhyaya ◽  
Awadhesh Kumar ◽  
P.D Naik ◽  
A.V Sapre ◽  
J.P Mittal

2021 ◽  
Author(s):  
Liang Wen ◽  
Thomas Schaefer ◽  
Hartmut Herrmann

<p>Amino acids are key substances in biological activities and can be emitted into the atmosphere as constituents of primary aerosols. Understanding the radical kinetics of amino acids is necessary to evaluate their atmospheric effects. In the present study, the hydroxyl radical (OH) reaction kinetics of glycine, alanine, serine and threonine were investigated in the aqueous phase. The temperature and pH dependent rate constants were measured by a laser flash photolysis-long path absorption setup using the competition kinetics method. Based on the measurements and speciation calculations, the OH radical reaction rate constants of the fully protonated (H<sub>2</sub>A<sup>+</sup>) and neutral (HA<sup>±</sup>) form were determined. The following T-dependent Arrhenius expressions were derived for the OH radical reactions with glycine, <em>k</em>(<em>T</em>, H<sub>2</sub>A<sup>+</sup>) = (9.1 ± 0.3) × 10<sup>9</sup> × exp[(-2360 ± 230 K)/<em>T</em>], <em>k</em>(<em>T</em>, HA<sup>±</sup>) = (1.3 ± 0.1) × 10<sup>10</sup> × exp[(-2040 ± 240 K)/<em>T</em>]; alanine, <em>k</em>(<em>T</em>, H<sub>2</sub>A<sup>+</sup>) = (1.0 ± 0.1) × 10<sup>9</sup> × exp[(-1030 ± 340 K)/<em>T</em>], <em>k</em>(<em>T</em>, HA<sup>±</sup>) = (6.8 ± 0.4) × 10<sup>10</sup> × exp[(-2020 ± 370 K)/<em>T</em>]; serine, <em>k</em>(<em>T</em>, H<sub>2</sub>A<sup>+</sup>) = (1.1 ± 0.1) × 10<sup>9</sup> × exp[(-470 ± 150 K)/<em>T</em>], <em>k</em>(<em>T</em>, HA<sup>±</sup>) = (3.9 ± 0.1) × 10<sup>9</sup> × exp[(-720 ± 130 K)/<em>T</em>]; and threonine, <em>k</em>(<em>T</em>, H<sub>2</sub>A<sup>+</sup>) = (5.0 ± 0.1) × 10<sup>10</sup> × exp[(-1500 ± 100 K)/<em>T</em>], <em>k</em>(<em>T</em>, HA<sup>±</sup>) = (3.3 ± 0.1) × 10<sup>10</sup> × exp[(-1320 ± 90 K)/<em>T</em>] (in units of L mol<sup>-1</sup> s<sup>-1</sup>).</p> <p>The density functional theory calculation was performed using GAUSSIAN to simulate the energy barriers (<em>E<sub>Barrier</sub></em>) of OH radical induced H-atom abstraction. According to the simulated results, amino and carboxyl group increase the <em>E<sub>Barrier</sub></em> at the adjacent C‑atom and thus reduce the OH radical reactivity. Hydroxide and methyl group decrease the <em>E<sub>Barrier</sub></em> at the adjacent C-atom, leading to an increase in the OH radical rate constant.</p>


2015 ◽  
Vol 6 (24) ◽  
pp. 4997-5001 ◽  
Author(s):  
Juddha Thapa ◽  
Michael Spencer ◽  
Novruz G. Akhmedov ◽  
Fabien Goulay

2017 ◽  
Vol 50 (2) ◽  
pp. 112-121 ◽  
Author(s):  
Dayanne L. H. Maia ◽  
Elenilson G. Alves Filho ◽  
Antonino F. Barros Junior ◽  
Fabiano A. N. Fernandes

2009 ◽  
Vol 113 (8) ◽  
pp. 1564-1573 ◽  
Author(s):  
Barbara Bankiewicz ◽  
Lam K. Huynh ◽  
Artur Ratkiewicz ◽  
Thanh N. Truong

Sign in / Sign up

Export Citation Format

Share Document