Semiclassical Treatment of Thermally Activated Electron Transfer in the Inverted Region under the Fast Dielectric Relaxation

2007 ◽  
Vol 111 (11) ◽  
pp. 2047-2053 ◽  
Author(s):  
Yi Zhao ◽  
MiaoMiao Han ◽  
WanZhen Liang ◽  
Hiroki Nakamura
1993 ◽  
Vol 97 (50) ◽  
pp. 13126-13131 ◽  
Author(s):  
Pingyun Chen ◽  
Sandra L. Mecklenburg ◽  
Thomas J. Meyer

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jorge A. Campos-Gonzalez-Angulo ◽  
Raphael F. Ribeiro ◽  
Joel Yuen-Zhou

Abstract Interaction between light and matter results in new quantum states whose energetics can modify chemical kinetics. In the regime of ensemble vibrational strong coupling (VSC), a macroscopic number $$N$$ N of molecular transitions couple to each resonant cavity mode, yielding two hybrid light–matter (polariton) modes and a reservoir of $$N-1$$ N − 1 dark states whose chemical dynamics are essentially those of the bare molecules. This fact is seemingly in opposition to the recently reported modification of thermally activated ground electronic state reactions under VSC. Here we provide a VSC Marcus–Levich–Jortner electron transfer model that potentially addresses this paradox: although entropy favors the transit through dark-state channels, the chemical kinetics can be dictated by a few polaritonic channels with smaller activation energies. The effects of catalytic VSC are maximal at light–matter resonance, in agreement with experimental observations.


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. 471-475 ◽  
Author(s):  
Giovanny A. Parada ◽  
Zachary K. Goldsmith ◽  
Scott Kolmar ◽  
Belinda Pettersson Rimgard ◽  
Brandon Q. Mercado ◽  
...  

Electron transfer reactions slow down when they become very thermodynamically favorable, a counterintuitive interplay of kinetics and thermodynamics termed the inverted region in Marcus theory. Here we report inverted region behavior for proton-coupled electron transfer (PCET). Photochemical studies of anthracene-phenol-pyridine triads give rate constants for PCET charge recombination that are slower for the more thermodynamically favorable reactions. Photoexcitation forms an anthracene excited state that undergoes PCET to create a charge-separated state. The rate constants for return charge recombination show an inverted dependence on the driving force upon changing pyridine substituents and the solvent. Calculations using vibronically nonadiabatic PCET theory yield rate constants for simultaneous tunneling of the electron and proton that account for the results.


Sign in / Sign up

Export Citation Format

Share Document