a charge
Recently Published Documents


TOTAL DOCUMENTS

4806
(FIVE YEARS 948)

H-INDEX

88
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Sobana Perumaram Rangarajan ◽  
Partha P Mukherjee ◽  
Yevgen Barsukov ◽  
Conner Fear ◽  
Gayatri Dadheech ◽  
...  

Safe and reliable fast charging of lithium-ion batteries is contingent upon the development of facile methods of detection and quantification of lithium plating. Among the leading candidates for online lithium plating detection is analysis of the voltage plateau observed during the rest or discharge phase ensuing a charge. In this work, an operando metric, ‘S-factor,’ is developed from electrochemical data to quantitatively analyze the severity of lithium plating over a range of charge rates and temperatures. An in-situ visualization method is employed to study the physical mechanisms and phase transitions occurring at the graphite electrode during the voltage plateau.


2022 ◽  
Author(s):  
Maya Khatun ◽  
Sayan Paul ◽  
Saikat Roy ◽  
Subhasis Dey ◽  
Anakuthil Anoop

We present a benchmark study on popular density functionals for their efficiency and accuracy in the geometry and relative stability of gold-thiolate nanoclusters taking Au3(SMe)3 isomers. We have used normalized mean absolute error (NMAE) analysis as a parameter to compare the results with the reference methods - DLPNO-CCSD(T) and RI-SCS-MP2. We have also compared the performance on the thiolate interaction energy of the stable geometries using the results from our benchmark study. One of the promising functional is PBE that shows robust performance for geometry optimization. On the other hand, M06-2X stands out as the proper choice for the relative energies of the clusters. With the selected methods, we have analyzed the gold-sulfur interaction in Au3(SMe)3 and a comparison is made with AuSMe. The bonding analysis has revealed a partial covalency between gold and sulfur atoms in general. On going from AuSMe to Au3(SMe)3, a substantial flow of charge from gold atoms to thiolate ligands as a result of the increase in gold s-d hybridization. As the s-d mixing in Au increases, the main character of Au-S interaction shifts from covalent to ionic. Hence, a covalent-charge-transfer interaction dominates in gold-sulfur bonding and gives rise to a charge-shift bonding.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 504
Author(s):  
Ranran Zhao ◽  
Yuming Zhang ◽  
Hongliang Lv ◽  
Yue Wu

This paper realized a charge pump phase locked loop (CPPLL) frequency source circuit based on 0.15 μm Win GaAs pHEMT process. In this paper, an improved fully differential edge-triggered frequency discriminator (PFD) and an improved differential structure charge pump (CP) are proposed respectively. In addition, a low noise voltage-controlled oscillator (VCO) and a static 64:1 frequency divider is realized. Finally, the phase locked loop (PLL) is realized by cascading each module. Measurement results show that the output signal frequency of the proposed CPPLL is 3.584 GHz–4.021 GHz, the phase noise at the frequency offset of 1 MHz is −117.82 dBc/Hz, and the maximum output power is 4.34 dBm. The chip area is 2701 μm × 3381 μm, and the power consumption is 181 mw.


2022 ◽  
Author(s):  
I. Romanenko

Abstract. Obtaining an artificial stone based on steel-smelting slag is possible as a result of carbonization of the feedstock in carbon dioxide. The feedstock - slag and carbon dioxide - are by-products from steel smelting in electric furnaces, which must be disposed of in order to improve the environmental situation in the region. The condition for obtaining the cementing ability of steelmaking slag is the preparation of a charge with certain properties and maturation technology: humidity, dispersion of the fine fraction and the maximum size of the coarse fraction, the ratio between the coarse and dispersed fractions, the concentration of carbon dioxide in the gas-air environment, temperature, pressure and flow time. carbonization reactions in the reactor, the magnitude of the pressure during the production of pressed articles, the process of stone maturation in the post-carbonization period.


2022 ◽  
pp. 1-16
Author(s):  
Ebrahim Balali ◽  
Sara Sandi ◽  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Sadegh Kaviani

The adsorption of the Zejula drug on the surface of B12N12 nanocluster has studied using DFT and TD-DFT. The quantum calculations have performed at the M062X/6–311 + + G(d,p) level of theory in the solvent water. The adsorption of the Zejula from N13 atom on the B12N12 leads to the higher electrical conductivity due to the low Eg rather. The change of DM also displays a charge transfer between Zejula and nanocluster. The UV absorption and IR spectra were calculated. The adsorption of Zejula drug over B12N12 nanocluster in the complexes Zejula/B12N12 can be considered as a bathochromic shift. According to QTAIM analysis, -G(r)/V(r) values for B-O and B-N bonds confirming the electrostatic and partial covalent character. The values of LOL and ELF confirm that the interactions are dominated by electrostatic interaction contributions. The calculated data reveal the B12N12 nanocluster can be appropriate as a biomedical system for the delivery of Zejula drug.


2022 ◽  
Vol 23 (1) ◽  
pp. 532
Author(s):  
Soojung Lee ◽  
Jason Lin ◽  
Inyeong Choi

The Na/HCO3 cotransporter NBCe1 is a member of SLC4A transporters that move HCO3− across cell membranes and regulate intracellular pH or transepithelial HCO3 transport. NBCe1 is highly selective to HCO3− and does not transport other anions; the molecular mechanism of anion selectivity is presently unclear. We previously reported that replacing Asp555 with a Glu (D555E) in NBCe1 induces increased selectivity to other anions, including Cl−. This finding is unexpected because all SLC4A transporters contain either Asp or Glu at the corresponding position and maintain a high selectivity to HCO3−. In this study, we tested whether the Cl− transport in D555E is mediated by an interaction between residues in the ion binding site. Human NBCe1 and mutant transporters were expressed in Xenopus oocytes, and their ability to transport Cl− was assessed by two-electrode voltage clamp. The results show that the Cl− transport is induced by a charge interaction between Glu555 and Lys558. The bond length between the two residues is within the distance for a salt bridge, and the ionic strength experiments confirm an interaction. This finding indicates that the HCO3− selectivity in NBCe1 is established by avoiding a specific charge interaction in the ion binding site, rather than maintaining such an interaction.


Author(s):  
Xiang Zhang ◽  
Kongzhao Su ◽  
Aya Mohamed ◽  
Caiping Liu ◽  
Qing-Fu Sun ◽  
...  

Photo-assisted Li-organic batteries provide an attractive approach for solar energy conversion and storage, while the challenge lies in the design of high-efficiency organic cathodes. Herein, a charge-separated and redox-active C60@porous...


2022 ◽  
Vol 130 (1) ◽  
pp. 184
Author(s):  
Н.В. Сидоров ◽  
Н.А. Теплякова ◽  
М.Н. Палатников

Raman spectroscopy, laser conoscopy and photoinduced light scattering methods have been applied to comparatively study composition uniformity of strongly doped LiNbO3 crystals with a magnesium concentration close to a threshold value ≈5 mol% MgО, grown from a charge synthesized using precursor Nb2O5:Mg (homogeneous doping method) and at direct addition of magnesium to the melt (direct doping method). It has been shown that application of homogeneous doping method allows one to obtain compositionally more homogeneous heavily doped LiNbO3:Mg crystal than direct melt doping method.


2022 ◽  
Author(s):  
Debabrata Chakraborty ◽  
Arijit Ghorai ◽  
Piyali Bhanja ◽  
Susanta Banerjee ◽  
Asim Bhaumik

Fuel cell technology for hydrogen production demands high proton conductivity of the membrane material at a relatively higher temperature. Thus, optimization of the proton conductivity of the membrane material is...


Sign in / Sign up

Export Citation Format

Share Document