Density Functional Theory and Atoms-in-Molecules Investigation of Intramolecular Hydrogen Bonding in Derivatives of Malonaldehyde and Implications for Resonance-Assisted Hydrogen Bonding

2007 ◽  
Vol 111 (34) ◽  
pp. 8519-8530 ◽  
Author(s):  
Jeffrey N. Woodford
2013 ◽  
Vol 12 (04) ◽  
pp. 1350025 ◽  
Author(s):  
HEIDAR RAISSI ◽  
FARZANEH FARZAD ◽  
SHAHIRA ESLAMDOOST ◽  
FARIBA MOLLANIA

In the present work a conformational analysis of 3-amino-propeneselenal (APS) was performed using several computational methods, including DFT (B3LYP), MP2 and G2MP2. Harmonic vibrational frequencies were estimated at the same levels to confirm the nature of the stationary points found and also to account for the zero point vibrational energy (ZPVE) correction. Two intramolecular hydrogen bonds (HBs) established between the polar groups were identified by the structural geometric parameters. The excited-state properties of intramolecular hydrogen bonding in hydrogen bonded systems have been investigated theoretically using the time dependent density functional theory (TDDFT) method. The influence of the solvent on the stability order of conformers and the strength of intramolecular hydrogen bonding was considered using the polarized continuum model (PCM), the self-consistent isodensity polarized continuum model (SCI-PCM) and the integral equation formalism-polarizable continuum model (IEF-PCM) methods. The "atoms in molecules" theory of Bader was used to analyze critical points and to study the nature of HB in these systems. Natural bond orbital (NBO) analysis was also performed for better understanding the nature of intramolecular interactions. The calculated the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies show that charge transfer occur within the molecule. Further verification of the obtained transition state structures were implemented via intrinsic reaction coordinate (IRC) analysis. Calculations of the 1 H NMR chemical shift at GIAO/B3LYP/6–311++G** level of theory are also presented.


2013 ◽  
Vol 177 ◽  
pp. 94-101 ◽  
Author(s):  
Mohammad Reza Housaindokht ◽  
Hossein Eshtiagh Hosseini ◽  
Mohammad Sadegh Sadeghi Googheri ◽  
Hassan Monhemi ◽  
Reza Izadi Najafabadi ◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Bryan D Linford ◽  
Andrea Le Donne ◽  
Debora Scuderi ◽  
Enrico Bodo ◽  
Travis D Fridgen

The gas-phase structure of protonated β-methylaminoalanine was investigated using infrared multiple photon dissociation spectroscopy in the C–H, N–H, O–H stretching region (2700–3800 cm−1) and the fingerprint region (1000–1900 cm−1). Calculations using density functional theory methods show that the lowest energy structures prefer protonation of the secondary amine. Formation of hydrogen bonds between the primary and secondary amine, and the secondary amine and carboxylic oxygen further stabilize the lowest energy structure. The infrared spectrum of the lowest energy structure originating with harmonic density functional theory has features that generally match the positions of the experimental spectra; however, the overall agreement with the experimental spectrum is poor. Molecular dynamics calculations were used to generate a gas-phase infrared spectrum. With these calculations a reasonable match with the experimental spectrum, especially in the high-energy region, was obtained. The results of the molecular dynamics simulation support the density functional theory calculations, with protonation of the secondary amine and the formation of a hydrogen bond between the protonated secondary amine and the primary amine. This work shows the importance of accounting for anharmonic effects in systems with very strong intramolecular hydrogen bonding.


2004 ◽  
Vol 03 (04) ◽  
pp. 527-542 ◽  
Author(s):  
SEIFOLLAH JALILI ◽  
MOJDEH AKHAVAN

The intramolecular hydrogen bonding formation in ortho-substituted compounds of Acetanilide, ortho-hydroxy Acetanilide and ortho-nitro Acetanilide, was investigated using Density Functional Theory (DFT), Møller-Plesset second-order (MP2) method and "Atoms in Molecules (AIM)" theory. It was found that in each case, the cis isomer is more stable than the trans isomer and ortho-nitro Acetanilide forms a stronger hydrogen bond than ortho-hydroxy Acetanilide. The effects of hydrogen bonding on structural parameters of the considered systems were studied using Becke's functional (B3LYP) and at the ab initio MP2 level in conjunction with different basis sets and suitable structural factors. The results are in agreement with the results of AIM theory.


Sign in / Sign up

Export Citation Format

Share Document