scholarly journals Coverage Analysis for the Core/Shell Electrode of Dye-Sensitized Solar Cells

2010 ◽  
Vol 114 (21) ◽  
pp. 10048-10053 ◽  
Author(s):  
Ta-Chang Tien ◽  
Fu-Ming Pan ◽  
Lih-Ping Wang ◽  
Feng-Yu Tsai ◽  
Ching Lin
2015 ◽  
Vol 787 ◽  
pp. 3-7 ◽  
Author(s):  
S. Karuppuchamy ◽  
C. Brundha

We demonstrated the construction and performance of dye-sensitized solar cells (DSCs) based on nanoparticles of TiO2coated with thin shells of MgO by simple solution growth technique. The XRD patterns confirm the presence of both TiO2and MgO in the core-shell structure. The effect of varied shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that MgO shells of all thicknesses perform as barriers that improve open-circuit voltage (Voc) of the DSCs only at the expense of a larger decrease in short-circuit current density (Jsc). The energy conversion efficiency was greatly dependent on the thickness of MgO on TiO2film, and the highest efficiency of 4.1% was achieved at the optimum MgO shell layer.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Luping Li ◽  
Cheng Xu ◽  
Yang Zhao ◽  
Kirk J. Ziegler

Dye-sensitized solar cells (DSSCs) hold great promise in the pursuit of reliable and cheap renewable energy. In this work, tin-doped indium oxide (ITO)-TiO2core-shell nanostructures are used as the photoanode for DSSCs. High-density, vertically aligned ITO nanowires are grown via a thermal evaporation method and TiO2is coated on nanowire surfaces via TiCl4treatment. It is found that high TiO2annealing temperatures increase the crystallinity of TiO2shell and suppress electron recombination in the core-shell nanostructures. High annealing temperatures also decrease dye loading. The highest efficiency of 3.39% is achieved at a TiO2annealing temperature of 500°C. When HfO2blocking layers are inserted between the core and shell of the nanowire, device efficiency is further increased to 5.83%, which is attributed to further suppression of electron recombination from ITO to the electrolyte. Open-circuit voltage decay (OCVD) measurements show that the electron lifetime increases by more than an order of magnitude upon HfO2insertion. ITO-TiO2core-shell nanostructures with HfO2blocking layers are promising photoanodes for DSSCs.


2010 ◽  
Vol 97 (4) ◽  
pp. 043102 ◽  
Author(s):  
Caitlin Rochford ◽  
Zhuang-Zhi Li ◽  
Javier Baca ◽  
Jianwei Liu ◽  
Jun Li ◽  
...  

2012 ◽  
Vol 155 ◽  
pp. 165-176 ◽  
Author(s):  
Seung-Hyun Anna Lee ◽  
Yixin Zhao ◽  
Emil A. Hernandez-Pagan ◽  
Landy Blasdel ◽  
W. Justin Youngblood ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 53
Author(s):  
Matius Nata Pakpahan ◽  
Aldi Hartanto ◽  
Yonatan Davidson Gultom ◽  
Nur Fadhilah ◽  
Doty Dewi Risanti

A SYNERGISTIC ABSORPTION AND PLASMONIC EFFECT OF SiO2@Au@TiO2 IN A TiO2 PHOTOANODE FOR DYE-SENSITIZED SOLAR CELLS. A method for increasing the visible-light harvesting of a TiO2 anatase photoanode in dye-sensitized solar cells by incorporating plasmonic nanostructures was developed. Sidoarjo mud as the SiO2 source was used to successfully synthesized core/multishell SiO2@Au@TiO2, with varying amounts of Au (60, 90, and 120 mL). In addition, the core/multishell fractions in TiO2 paste were varied, i.e., 0.5%, 1%, and 5%. The UV–Vis spectrum shows that a more ripple spectrum at higher wavelengths is obtained with increasing Au content, as suggested by the presence of large Au nanoparticles; however, a similar value of efficiency is observed for all sample variations studied compared to a pure TiO2 photoanode. The incident photon-to-current efficiency reveals that all photoanodes containing the core/multishell SiO2@Au@TiO2 studied show somewhat broader and enhanced spectra for all studied wavelengths compared to the pure TiO2 photoanode, resulting from the synergistic effect between plasmonic nanostructures and the presence of silica that boost the absorption to higher wavelengths.


Sign in / Sign up

Export Citation Format

Share Document