indium oxide
Recently Published Documents


TOTAL DOCUMENTS

1934
(FIVE YEARS 291)

H-INDEX

88
(FIVE YEARS 11)

Author(s):  
Bar Hen ◽  
Victor Shelukhin ◽  
Eran Greenberg ◽  
Gregory Kh Rozenberg ◽  
Aharon Kapitulnik ◽  
...  

Abstract Experiments investigating magnetic-field-tuned superconductor-insulator transition (HSIT) mostly focus on two-dimensional material systems where the transition and its proximate ground-state phases, often exhibit features that are seemingly at odds with the expected behavior. Here we present a complementary study of a three-dimensional pressure-packed amorphous indium-oxide (InOx) powder where granularity controls the HSIT. Above a low threshold pressure of ~0.2 GPa, vestiges of superconductivity are detected, although neither a true superconducting transition nor insulating behavior are observed. Instead, a saturation at very high resistivity at low pressure is followed by saturation at very low resistivity at higher pressure. We identify both as different manifestations of anomalous metallic phases dominated by superconducting fluctuations. By analogy with previous identification of the low resistance saturation as a "failed superconductor", our data suggests that the very high resistance saturation is a manifestation of a "failed insulator". Above a threshold pressure of ~6 GPa, the sample becomes fully packed, and superconductivity is robust, with TC tunable with pressure. A quantum critical point at PC~25 GPa marks the complete suppression of superconductivity. For a finite pressure below PC, a magnetic field is shown to induce a HSIT from a true zero-resistance superconducting state to a weakly insulating behavior. Determining the critical field, HC, we show that similar to the 2D behavior, the insulating-like state maintains a superconducting character, which is quenched at higher field, above which the magnetoresistance decreases to its fermionic normal state value.


Author(s):  
Mang Zheng ◽  
Qi Li ◽  
Mingyang Liu ◽  
Jianan Liu ◽  
Chen Zhao ◽  
...  

Author(s):  
Tawney Knecht ◽  
Shannon W. Boettcher ◽  
James Hutchison

Abstract The electrochemical reduction of CO2 into fuels using renewable electricity presents an opportunity to utilize captured CO2. Electrocatalyst development has been the primary focus of research in this area. This is especially true at the nanoscale, where researchers have focused on understanding nanostructure-property relationships. However, electrocatalyst structure may evolve during operation. Indium- and tin-based oxides have been widely studied as electrocatalysts for CO2 reduction to formate, but evolution of these catalysts during operation is not well-characterized. Here, we report the evolution of nanoscale structure of tin-doped indium oxide nanocrystals under CO2 reduction conditions. We show that sparse monolayer nanocrystal films desorb from the electrode upon charging, but thicker nanocrystal films remain, likely due to increased number of physical contacts. Upon applying a cathodic voltage of -1.0 V vs RHE or greater, the original 10-nm diameter nanocrystals are no longer visible, and instead form a larger microstructural network. Elemental analysis suggests the network is an oxygen-deficient indium-tin metal alloy. We hypothesize that this morphological evolution is the result of nanocrystal sintering due to oxide reduction. These data provide insights into the morphological evolution tin-doped indium oxide nanocrystal electrocatalysts under reducing conditions and highlight the importance of post-electrochemical structural characterization of electrocatalysts.


Sign in / Sign up

Export Citation Format

Share Document