plasmonic effect
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 69)

H-INDEX

25
(FIVE YEARS 7)

Author(s):  
Sriram Mansingh ◽  
Dipti Prava Sahoo ◽  
Lekha Paramanik ◽  
Mitarani Sahoo ◽  
Kulamani Parida

Au loaded ZnCr-LDH/RGO ternary photocatalyst for H2 and H2O2 production under visible light illumination.


2021 ◽  
Vol 22 (2) ◽  
pp. 53
Author(s):  
Matius Nata Pakpahan ◽  
Aldi Hartanto ◽  
Yonatan Davidson Gultom ◽  
Nur Fadhilah ◽  
Doty Dewi Risanti

A SYNERGISTIC ABSORPTION AND PLASMONIC EFFECT OF SiO2@Au@TiO2 IN A TiO2 PHOTOANODE FOR DYE-SENSITIZED SOLAR CELLS. A method for increasing the visible-light harvesting of a TiO2 anatase photoanode in dye-sensitized solar cells by incorporating plasmonic nanostructures was developed. Sidoarjo mud as the SiO2 source was used to successfully synthesized core/multishell SiO2@Au@TiO2, with varying amounts of Au (60, 90, and 120 mL). In addition, the core/multishell fractions in TiO2 paste were varied, i.e., 0.5%, 1%, and 5%. The UV–Vis spectrum shows that a more ripple spectrum at higher wavelengths is obtained with increasing Au content, as suggested by the presence of large Au nanoparticles; however, a similar value of efficiency is observed for all sample variations studied compared to a pure TiO2 photoanode. The incident photon-to-current efficiency reveals that all photoanodes containing the core/multishell SiO2@Au@TiO2 studied show somewhat broader and enhanced spectra for all studied wavelengths compared to the pure TiO2 photoanode, resulting from the synergistic effect between plasmonic nanostructures and the presence of silica that boost the absorption to higher wavelengths.


2021 ◽  
Vol 22 (15) ◽  
pp. 8037
Author(s):  
Akshita Chauhan ◽  
Tabassum Khan ◽  
Abdelwahab Omri

The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.


Sign in / Sign up

Export Citation Format

Share Document